Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217064 by ArshadS last updated on 28/Feb/25

Two numbers differ by 6. The sum of their reciprocals is (2/(15)) .  Determine the numbers.

$$\mathrm{Two}\:\mathrm{numbers}\:\mathrm{differ}\:\mathrm{by}\:\mathrm{6}.\:\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{reciprocals}\:\mathrm{is}\:\frac{\mathrm{2}}{\mathrm{15}}\:. \\ $$$$\mathcal{D}{etermine}\:{the}\:{numbers}. \\ $$

Answered by A5T last updated on 28/Feb/25

(1/a)+(1/b)=(2/(15))⇒15(a+b)=2ab  a−b=+_− 6⇒a=b+_− 6  a=b+6⇒15(b+3)=b(b+6)  ⇒b^2 −9b−45=0⇒b=((9+_− (√(261)))/2)  ⇒a=((21+_− (√(261)))/2)⇒(a,b)=(((21+_− (√(261)))/2),((9+_− (√(261)))/2))  a=b−6⇒15(b−3)=b(b−6)  ⇒b^2 −21b+45b=0⇒b=((21+_− (√(261)))/2)⇒a=((9+_− (√(261)))/2)

$$\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}=\frac{\mathrm{2}}{\mathrm{15}}\Rightarrow\mathrm{15}\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{2ab} \\ $$$$\mathrm{a}−\mathrm{b}=\underset{−} {+}\mathrm{6}\Rightarrow\mathrm{a}=\mathrm{b}\underset{−} {+}\mathrm{6} \\ $$$$\mathrm{a}=\mathrm{b}+\mathrm{6}\Rightarrow\mathrm{15}\left(\mathrm{b}+\mathrm{3}\right)=\mathrm{b}\left(\mathrm{b}+\mathrm{6}\right) \\ $$$$\Rightarrow\mathrm{b}^{\mathrm{2}} −\mathrm{9b}−\mathrm{45}=\mathrm{0}\Rightarrow\mathrm{b}=\frac{\mathrm{9}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{21}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}}\Rightarrow\left(\mathrm{a},\mathrm{b}\right)=\left(\frac{\mathrm{21}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}},\frac{\mathrm{9}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}}\right) \\ $$$$\mathrm{a}=\mathrm{b}−\mathrm{6}\Rightarrow\mathrm{15}\left(\mathrm{b}−\mathrm{3}\right)=\mathrm{b}\left(\mathrm{b}−\mathrm{6}\right) \\ $$$$\Rightarrow\mathrm{b}^{\mathrm{2}} −\mathrm{21b}+\mathrm{45b}=\mathrm{0}\Rightarrow\mathrm{b}=\frac{\mathrm{21}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}}\Rightarrow\mathrm{a}=\frac{\mathrm{9}\underset{−} {+}\sqrt{\mathrm{261}}}{\mathrm{2}} \\ $$

Commented by ArshadS last updated on 28/Feb/25

Thanks sir!

$$\mathrm{Thanks}\:\mathrm{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com