Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 218208 by Marzuk last updated on 01/Apr/25

This question is really important  Prove or disprove that  lim_(n→∞)  ((3^n m+3^(n−1) )/2^(⌈(n/2)⌉) ) + (3^(n−1) /2^n )    the limit exists for m ∈ N \B  where B = {n ∣ log_2 (n) ∈ N }

$${This}\:{question}\:{is}\:{really}\:{important} \\ $$$${Prove}\:{or}\:{disprove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{n}} {m}+\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{\lceil\frac{{n}}{\mathrm{2}}\rceil} }\:+\:\frac{\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} }\: \\ $$$$\:{the}\:{limit}\:{exists}\:{for}\:{m}\:\in\:{N}\:\backslash{B} \\ $$$${where}\:{B}\:=\:\left\{{n}\:\mid\:{log}_{\mathrm{2}} \left({n}\right)\:\in\:{N}\:\right\} \\ $$

Commented by Marzuk last updated on 01/Apr/25

This question is highly related with  Collatz  Conjecture

$${This}\:{question}\:{is}\:{highly}\:{related}\:{with} \\ $$$${Collatz}\:\:{Conjecture} \\ $$

Answered by MrGaster last updated on 05/Apr/25

=lim_(n→∞) ((3^(n−1) (3m+1))/2^([n/2]) )+(3^(n−1) /2^n )  =lim_(n→∞) 3^(n−1) (((3m+1)/2^([n/2]) )+(1/2^n )) ∀n∈N,[(n/2)]is defined as  ⌈(n/2)⌉= { (((n/2) if n∈even)),((((n+1)/2) if n is odd)) :}  Case when n is even:  2^(⌈(n/2)⌉) =2^(n/2)   ⇒((3^(n−1) (3m+1))/2^(n/2) )=((3^n (3m+1))/(3∙2^(n/2) ))=(((3m+1))/3)∙((9/2))^(n/2)   n∈odd:  2^(⌈(n/2)⌉) =2^((n+1)/2)   ⇒((3^(n−1) (3m+1))/2^((n+1)/2) )=((3^n (3m+1))/(3∙2^((n+1)/3) ))=(((3m+1))/(3(√2)))∙((9/2))^(n/2)   Second term:  (3^(n−1) /2^n )=(1/3)∙((3/4))^n   Main term analysis (order comparison):  ((9/2))^(n/2) ≫((3/4))^n ∵((9/2))^(1/2) =(3/( (√2)))>(3/4)  ⇒lim_(n→∞) (((3m+1)/3)∙((9/2))^(n/2) +(1/3)∙((3/4))^n )=+∞  ⇒∄lim

$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}^{{n}−\mathrm{1}} \left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{2}^{\left[{n}/\mathrm{2}\right]} }+\frac{\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} } \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}3}^{{n}−\mathrm{1}} \left(\frac{\mathrm{3}{m}+\mathrm{1}}{\mathrm{2}^{\left[{n}/\mathrm{2}\right]} }+\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\:\forall{n}\in\mathbb{N},\left[\frac{{n}}{\mathrm{2}}\right]\mathrm{is}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\lceil\frac{{n}}{\mathrm{2}}\rceil=\begin{cases}{\frac{{n}}{\mathrm{2}}\:\mathrm{if}\:{n}\in\mathrm{even}}\\{\frac{{n}+\mathrm{1}}{\mathrm{2}}\:\mathrm{if}\:{n}\:\mathrm{is}\:\mathrm{odd}}\end{cases} \\ $$$$\mathrm{Case}\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{even}: \\ $$$$\mathrm{2}^{\lceil\frac{{n}}{\mathrm{2}}\rceil} =\mathrm{2}^{{n}/\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3}^{{n}−\mathrm{1}} \left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{2}^{{n}/\mathrm{2}} }=\frac{\mathrm{3}^{{n}} \left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{3}\centerdot\mathrm{2}^{{n}/\mathrm{2}} }=\frac{\left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{3}}\centerdot\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{{n}/\mathrm{2}} \\ $$$${n}\in\mathrm{odd}: \\ $$$$\mathrm{2}^{\lceil\frac{{n}}{\mathrm{2}}\rceil} =\mathrm{2}^{\left({n}+\mathrm{1}\right)/\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3}^{{n}−\mathrm{1}} \left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{2}^{\left({n}+\mathrm{1}\right)/\mathrm{2}} }=\frac{\mathrm{3}^{{n}} \left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{3}\centerdot\mathrm{2}^{\left({n}+\mathrm{1}\right)/\mathrm{3}} }=\frac{\left(\mathrm{3}{m}+\mathrm{1}\right)}{\mathrm{3}\sqrt{\mathrm{2}}}\centerdot\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{{n}/\mathrm{2}} \\ $$$$\mathrm{Second}\:\mathrm{term}: \\ $$$$\frac{\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} }=\frac{\mathrm{1}}{\mathrm{3}}\centerdot\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$$\mathrm{Main}\:\mathrm{term}\:\mathrm{analysis}\:\left(\mathrm{order}\:\mathrm{comparison}\right): \\ $$$$\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{{n}/\mathrm{2}} \gg\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \because\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{1}/\mathrm{2}} =\frac{\mathrm{3}}{\:\sqrt{\mathrm{2}}}>\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3}{m}+\mathrm{1}}{\mathrm{3}}\centerdot\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{{n}/\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}\centerdot\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \right)=+\infty \\ $$$$\Rightarrow\nexists\underline{\mathrm{lim}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com