Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 113368 by mr W last updated on 12/Sep/20

There are 4 identical mathematics  books, 3 identical physics books, 2  identical chemistry books.  in how many ways  can you compile  the 9 books such that same books are  not mutually adjacent.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{3}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile} \\ $$$$\mathrm{the}\:\mathrm{9}\:\mathrm{books}\:\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$

Answered by mr W last updated on 15/Sep/20

case 1:  xMxMxMxMx  ⇒((5!)/(3!2!))=10 ways    case 2:  xMxMxyMxM  ⇒4×2×((3!)/(2!))=24 ways    case 3:  MxMxyMxMx  ⇒4×2×((3!)/(2!))=24 ways    case 4:  MxMxyMxyM  ⇒3×2×2=12 ways    case 5:  MPMPCPMCM  MCMPCPMPM  MPMCPCMPM  ⇒3×3=9 ways    totally: 10+24+24+12+9=79 ways

$${case}\:\mathrm{1}: \\ $$$${xMxMxMxMx} \\ $$$$\Rightarrow\frac{\mathrm{5}!}{\mathrm{3}!\mathrm{2}!}=\mathrm{10}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{2}: \\ $$$${xMxMxyMxM} \\ $$$$\Rightarrow\mathrm{4}×\mathrm{2}×\frac{\mathrm{3}!}{\mathrm{2}!}=\mathrm{24}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{3}: \\ $$$${MxMxyMxMx} \\ $$$$\Rightarrow\mathrm{4}×\mathrm{2}×\frac{\mathrm{3}!}{\mathrm{2}!}=\mathrm{24}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{4}: \\ $$$${MxMxyMxyM} \\ $$$$\Rightarrow\mathrm{3}×\mathrm{2}×\mathrm{2}=\mathrm{12}\:{ways} \\ $$$$ \\ $$$${case}\:\mathrm{5}: \\ $$$${MPMPCPMCM} \\ $$$${MCMPCPMPM} \\ $$$${MPMCPCMPM} \\ $$$$\Rightarrow\mathrm{3}×\mathrm{3}=\mathrm{9}\:{ways} \\ $$$$ \\ $$$${totally}:\:\mathrm{10}+\mathrm{24}+\mathrm{24}+\mathrm{12}+\mathrm{9}=\mathrm{79}\:{ways} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com