Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 113986 by deepraj123 last updated on 16/Sep/20

The solution set of the equation  4 sin θ cos θ−2 cos θ−2 (√3) sin θ+(√3) =0  in the interval  (0, 2π)  is

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{4}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mathrm{2}\:\mathrm{cos}\:\theta−\mathrm{2}\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:=\mathrm{0} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\:\left(\mathrm{0},\:\mathrm{2}\pi\right)\:\:\mathrm{is} \\ $$

Answered by MJS_new last updated on 16/Sep/20

let t=tan (θ/2) ⇔ θ=2arctan t  −((8t(t^2 −1))/((t^2 +1)^2 ))+((2(t^2 −1))/(t^2 +1))−((4(√3)t)/(t^2 +1))+(√3)=0  (2+(√3))t^4 −4(2+(√3))t^3 +2(√3)t^2 +4(2−(√3))t−2+(√3)=0  t^4 −4t^3 −2(3−2(√3))t^2 +4(7−4(√3))t−7+4(√3)=0  (t−2+(√3))^2 (t+2−(√3))(t−2−(√3))=0  t_(1, 2) =2−(√3)  t_3 =−2+(√3)  t_4 =2+(√3)  t=tan (θ/2)  ⇒ x_(1, 2) =(π/6)     x_3 =((11π)/6)     x_4 =((5π)/6)

$$\mathrm{let}\:{t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:\Leftrightarrow\:\theta=\mathrm{2arctan}\:{t} \\ $$$$−\frac{\mathrm{8}{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{4}\sqrt{\mathrm{3}}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){t}^{\mathrm{4}} −\mathrm{4}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){t}^{\mathrm{3}} +\mathrm{2}\sqrt{\mathrm{3}}{t}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{2}−\sqrt{\mathrm{3}}\right){t}−\mathrm{2}+\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$${t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{3}} −\mathrm{2}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{3}}\right){t}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\right){t}−\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\left({t}−\mathrm{2}+\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \left({t}+\mathrm{2}−\sqrt{\mathrm{3}}\right)\left({t}−\mathrm{2}−\sqrt{\mathrm{3}}\right)=\mathrm{0} \\ $$$${t}_{\mathrm{1},\:\mathrm{2}} =\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$${t}_{\mathrm{3}} =−\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$${t}_{\mathrm{4}} =\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$${t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}_{\mathrm{1},\:\mathrm{2}} =\frac{\pi}{\mathrm{6}}\:\:\:\:\:{x}_{\mathrm{3}} =\frac{\mathrm{11}\pi}{\mathrm{6}}\:\:\:\:\:{x}_{\mathrm{4}} =\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com