Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 50915 by peter frank last updated on 22/Dec/18

The range of riffle bullet  is 1000m when θ is the angle  of projection.if the bullet  is fired  with the same   angle  from a car travelling  at 36km/h towards the target  show that the range will  be increased by  ((1000)/7).(√(tanθ)) m.

$${The}\:{range}\:{of}\:{riffle}\:{bullet} \\ $$$${is}\:\mathrm{1000}{m}\:{when}\:\theta\:{is}\:{the}\:{angle} \\ $$$${of}\:{projection}.{if}\:{the}\:{bullet} \\ $$$${is}\:{fired}\:\:{with}\:{the}\:{same}\: \\ $$$${angle}\:\:{from}\:{a}\:{car}\:{travelling} \\ $$$${at}\:\mathrm{36}{km}/{h}\:{towards}\:{the}\:{target} \\ $$$${show}\:{that}\:{the}\:{range}\:{will} \\ $$$${be}\:{increased}\:{by} \\ $$$$\frac{\mathrm{1000}}{\mathrm{7}}.\sqrt{{tan}\theta}\:{m}. \\ $$

Answered by mr W last updated on 22/Dec/18

case 1: fired from the ground  u sin θ t−(1/2)gt^2 =0 ⇒ t=((2 u sin θ)/g)  L_1 =u cos θ t=((2 u^2  sin θ cos θ)/g)=((u^2  sin 2θ )/g)  ⇒u=(√((gL_1 )/(sin 2θ)))    case 2: fired from the car with speed v  u sin θ t−(1/2)gt^2 =0 ⇒ t=((2 u sin θ)/g)  L_2 =(u cos θ+v) t=u cos θ t +vt=L_1 +vt=L_1 +((2 uv sin θ)/g)  ΔL=L_2 −L_1 =((2 uv sin θ)/g)  ΔL=((2v sin θ)/g)(√((gL_1 )/(sin 2θ)))  ΔL=v(√((4 sin^2  θ gL_1 )/(g^2  2 sin θ cos θ)))  ⇒ΔL=v(√((2 tan  θ L_1 )/g))  with v=36km/h=10 m/s, g=9.81m/s^2 , L_1 =1000 m  ⇒ΔL=10(√((2 tan  θ 1000)/(9.81)))  ⇒ΔL=((1000)/(√(49.05)))(√(tan θ))≈((1000)/7)(√(tan θ))

$${case}\:\mathrm{1}:\:{fired}\:{from}\:{the}\:{ground} \\ $$$${u}\:\mathrm{sin}\:\theta\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{t}=\frac{\mathrm{2}\:{u}\:\mathrm{sin}\:\theta}{{g}} \\ $$$${L}_{\mathrm{1}} ={u}\:\mathrm{cos}\:\theta\:{t}=\frac{\mathrm{2}\:{u}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{{g}}=\frac{{u}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\theta\:}{{g}} \\ $$$$\Rightarrow{u}=\sqrt{\frac{{gL}_{\mathrm{1}} }{\mathrm{sin}\:\mathrm{2}\theta}} \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{fired}\:{from}\:{the}\:{car}\:{with}\:{speed}\:{v} \\ $$$${u}\:\mathrm{sin}\:\theta\:{t}−\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{t}=\frac{\mathrm{2}\:{u}\:\mathrm{sin}\:\theta}{{g}} \\ $$$${L}_{\mathrm{2}} =\left({u}\:\mathrm{cos}\:\theta+{v}\right)\:{t}={u}\:\mathrm{cos}\:\theta\:{t}\:+{vt}={L}_{\mathrm{1}} +{vt}={L}_{\mathrm{1}} +\frac{\mathrm{2}\:{uv}\:\mathrm{sin}\:\theta}{{g}} \\ $$$$\Delta{L}={L}_{\mathrm{2}} −{L}_{\mathrm{1}} =\frac{\mathrm{2}\:{uv}\:\mathrm{sin}\:\theta}{{g}} \\ $$$$\Delta{L}=\frac{\mathrm{2}{v}\:\mathrm{sin}\:\theta}{{g}}\sqrt{\frac{{gL}_{\mathrm{1}} }{\mathrm{sin}\:\mathrm{2}\theta}} \\ $$$$\Delta{L}={v}\sqrt{\frac{\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:{gL}_{\mathrm{1}} }{{g}^{\mathrm{2}} \:\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}} \\ $$$$\Rightarrow\Delta{L}={v}\sqrt{\frac{\mathrm{2}\:\mathrm{tan}\:\:\theta\:{L}_{\mathrm{1}} }{{g}}} \\ $$$${with}\:{v}=\mathrm{36}{km}/{h}=\mathrm{10}\:{m}/{s},\:{g}=\mathrm{9}.\mathrm{81}{m}/{s}^{\mathrm{2}} ,\:{L}_{\mathrm{1}} =\mathrm{1000}\:{m} \\ $$$$\Rightarrow\Delta{L}=\mathrm{10}\sqrt{\frac{\mathrm{2}\:\mathrm{tan}\:\:\theta\:\mathrm{1000}}{\mathrm{9}.\mathrm{81}}} \\ $$$$\Rightarrow\Delta{L}=\frac{\mathrm{1000}}{\sqrt{\mathrm{49}.\mathrm{05}}}\sqrt{\mathrm{tan}\:\theta}\approx\frac{\mathrm{1000}}{\mathrm{7}}\sqrt{\mathrm{tan}\:\theta} \\ $$

Commented by peter frank last updated on 22/Dec/18

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com