Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 18322 by Tinkutara last updated on 18/Jul/17

The pulley arrangements are identical.  The mass of the rope is negligible. In  (a), the mass m is lifted up by attaching  a mass (2m) to the other end of the rope.  In (b), m is lifted up by pulling the  other end of the rope with a constant  downward force F = 2mg. In which  case, the acceleration of m is more?

$$\mathrm{The}\:\mathrm{pulley}\:\mathrm{arrangements}\:\mathrm{are}\:\mathrm{identical}. \\ $$$$\mathrm{The}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{negligible}.\:\mathrm{In} \\ $$$$\left(\mathrm{a}\right),\:\mathrm{the}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{attaching} \\ $$$$\mathrm{a}\:\mathrm{mass}\:\left(\mathrm{2}{m}\right)\:\mathrm{to}\:\mathrm{the}\:\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}. \\ $$$$\mathrm{In}\:\left(\mathrm{b}\right),\:{m}\:\mathrm{is}\:\mathrm{lifted}\:\mathrm{up}\:\mathrm{by}\:\mathrm{pulling}\:\mathrm{the} \\ $$$$\mathrm{other}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{with}\:\mathrm{a}\:\mathrm{constant} \\ $$$$\mathrm{downward}\:\mathrm{force}\:{F}\:=\:\mathrm{2}{mg}.\:\mathrm{In}\:\mathrm{which} \\ $$$$\mathrm{case},\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:{m}\:\mathrm{is}\:\mathrm{more}? \\ $$

Commented by Tinkutara last updated on 18/Jul/17

Answered by ajfour last updated on 18/Jul/17

In (b) Tension in rope, T_b =2mg  T_b −mg=ma_b   2mg−mg=ma_b                         a_b  =g  In (a) 2mg−T_a =2ma_a   and      T_a −mg=ma_a   adding:       mg=3ma_a                         a_a  =(g/3) .        a_b  > a_a  .

$$\mathrm{In}\:\left(\mathrm{b}\right)\:\mathrm{Tension}\:\mathrm{in}\:\mathrm{rope},\:\mathrm{T}_{\mathrm{b}} =\mathrm{2mg} \\ $$$$\mathrm{T}_{\mathrm{b}} −\mathrm{mg}=\mathrm{ma}_{\mathrm{b}} \\ $$$$\mathrm{2mg}−\mathrm{mg}=\mathrm{ma}_{\mathrm{b}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}_{\mathrm{b}} \:=\mathrm{g} \\ $$$$\mathrm{In}\:\left(\mathrm{a}\right)\:\mathrm{2mg}−\mathrm{T}_{\mathrm{a}} =\mathrm{2ma}_{\mathrm{a}} \\ $$$$\mathrm{and}\:\:\:\:\:\:\mathrm{T}_{\mathrm{a}} −\mathrm{mg}=\mathrm{ma}_{\mathrm{a}} \\ $$$$\mathrm{adding}:\:\:\:\:\:\:\:\mathrm{mg}=\mathrm{3ma}_{\mathrm{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{a}_{\mathrm{a}} \:=\frac{\mathrm{g}}{\mathrm{3}}\:. \\ $$$$\:\:\:\:\:\:\mathrm{a}_{\mathrm{b}} \:>\:\mathrm{a}_{\mathrm{a}} \:. \\ $$

Commented by Tinkutara last updated on 19/Jul/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com