Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 172099 by Mastermind last updated on 23/Jun/22

The probability that Abiola will be  late to office on a given day is(2/5) . in  a given week of six days, find the   1) probability that he will be late of  only 3 days  2) not be late in the week

$${The}\:{probability}\:{that}\:{Abiola}\:{will}\:{be} \\ $$$${late}\:{to}\:{office}\:{on}\:{a}\:{given}\:{day}\:{is}\frac{\mathrm{2}}{\mathrm{5}}\:.\:{in} \\ $$$${a}\:{given}\:{week}\:{of}\:{six}\:{days},\:{find}\:{the}\: \\ $$$$\left.\mathrm{1}\right)\:{probability}\:{that}\:{he}\:{will}\:{be}\:{late}\:{of} \\ $$$${only}\:\mathrm{3}\:{days} \\ $$$$\left.\mathrm{2}\right)\:{not}\:{be}\:{late}\:{in}\:{the}\:{week} \\ $$

Answered by mr W last updated on 24/Jun/22

1)  p(3)=C_3 ^6 ((2/5))^3 (1−(2/5))^3 =27.6%  2)  p(0)=C_0 ^6 ((2/5))^0 (1−(2/5))^6 =4.7%

$$\left.\mathrm{1}\right) \\ $$$${p}\left(\mathrm{3}\right)={C}_{\mathrm{3}} ^{\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{3}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{3}} =\mathrm{27}.\mathrm{6\%} \\ $$$$\left.\mathrm{2}\right) \\ $$$${p}\left(\mathrm{0}\right)={C}_{\mathrm{0}} ^{\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{0}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{5}}\right)^{\mathrm{6}} =\mathrm{4}.\mathrm{7\%} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com