Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 191149 by SLVR last updated on 19/Apr/23

The number of solutions of  ∣x+3∣+∣x−2∣+3sinx−3=0 is

$${The}\:{number}\:{of}\:{solutions}\:{of} \\ $$$$\mid{x}+\mathrm{3}\mid+\mid{x}−\mathrm{2}\mid+\mathrm{3}{sinx}−\mathrm{3}=\mathrm{0}\:{is} \\ $$

Commented by SLVR last updated on 19/Apr/23

sir kindly help me

$${sir}\:{kindly}\:{help}\:{me}\: \\ $$

Commented by SLVR last updated on 19/Apr/23

sir Mr.W...kindly help if  you are free

$${sir}\:{Mr}.{W}...{kindly}\:{help}\:{if} \\ $$$${you}\:{are}\:{free} \\ $$

Commented by Frix last updated on 19/Apr/23

I'm Freex ��

Answered by Frix last updated on 19/Apr/23

∣x+3∣+∣x−2∣=3(1−sin x)  f_1 (x)=∣x+3∣+∣x−2∣= { ((−2x−1; x<−3)),((5; −3≤x≤2)),((2x+1; x>2)) :}  0≤(f_2 (x)=3(1−sin x))≤6  x∈[−(7/2); (5/2)]: 5≤f_1 (x)≤6 ⇒  Solutions possible within this interval ⇒  2 solutions:  x_1 =−π+sin^(−1)  (2/3)  x_2 =−sin^(−1)  (2/3)

$$\mid{x}+\mathrm{3}\mid+\mid{x}−\mathrm{2}\mid=\mathrm{3}\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\mid{x}+\mathrm{3}\mid+\mid{x}−\mathrm{2}\mid=\begin{cases}{−\mathrm{2}{x}−\mathrm{1};\:{x}<−\mathrm{3}}\\{\mathrm{5};\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{2}}\\{\mathrm{2}{x}+\mathrm{1};\:{x}>\mathrm{2}}\end{cases} \\ $$$$\mathrm{0}\leqslant\left({f}_{\mathrm{2}} \left({x}\right)=\mathrm{3}\left(\mathrm{1}−\mathrm{sin}\:{x}\right)\right)\leqslant\mathrm{6} \\ $$$${x}\in\left[−\frac{\mathrm{7}}{\mathrm{2}};\:\frac{\mathrm{5}}{\mathrm{2}}\right]:\:\mathrm{5}\leqslant{f}_{\mathrm{1}} \left({x}\right)\leqslant\mathrm{6}\:\Rightarrow \\ $$$$\mathrm{Solutions}\:\mathrm{possible}\:\mathrm{within}\:\mathrm{this}\:\mathrm{interval}\:\Rightarrow \\ $$$$\mathrm{2}\:\mathrm{solutions}: \\ $$$${x}_{\mathrm{1}} =−\pi+\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${x}_{\mathrm{2}} =−\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by SLVR last updated on 19/Apr/23

thanks sir

$${thanks}\:{sir} \\ $$

Answered by mr W last updated on 19/Apr/23

∣x+3∣+∣x−2∣=3(1−sin x)  f(x)=g(x)  LHS f(x)≥5  0≤RHS g(x)≤6  that means: solution could exist.  with x<−3:  f(x)=−3−x+2−x=−1−2x  for x<−3.5 f(x)>6, that means  for x<−3.5 f(x)≠g(x)  for −3.5≤x<−3 g(x)<3(1+sin 3)≈3.423<5  that means for −3.5≤x<−3 f(x)≠g(x)  ⇒for x<−3 f(x)=g(x) has no solution.  with x>2:  similarly to above f(x)=g(x) has  no solution.  with −3≤x≤2:  f(x)=5  f(x)=g(x)  5=3(1−sin x)  ⇒sin x=−(2/3)  ⇒x=−sin^(−1) (2/3) or −π+sin^(−1) (2/3)  totally:  ∣x+3∣+∣x−2∣+3sinx−3=0 has  2 solutions:  x=−sin^(−1) (2/3) or −π+sin^(−1) (2/3)

$$\mid{x}+\mathrm{3}\mid+\mid{x}−\mathrm{2}\mid=\mathrm{3}\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$${f}\left({x}\right)={g}\left({x}\right) \\ $$$${LHS}\:{f}\left({x}\right)\geqslant\mathrm{5} \\ $$$$\mathrm{0}\leqslant{RHS}\:{g}\left({x}\right)\leqslant\mathrm{6} \\ $$$${that}\:{means}:\:{solution}\:{could}\:{exist}. \\ $$$${with}\:{x}<−\mathrm{3}: \\ $$$${f}\left({x}\right)=−\mathrm{3}−{x}+\mathrm{2}−{x}=−\mathrm{1}−\mathrm{2}{x} \\ $$$${for}\:{x}<−\mathrm{3}.\mathrm{5}\:{f}\left({x}\right)>\mathrm{6},\:{that}\:{means} \\ $$$${for}\:{x}<−\mathrm{3}.\mathrm{5}\:{f}\left({x}\right)\neq{g}\left({x}\right) \\ $$$${for}\:−\mathrm{3}.\mathrm{5}\leqslant{x}<−\mathrm{3}\:{g}\left({x}\right)<\mathrm{3}\left(\mathrm{1}+\mathrm{sin}\:\mathrm{3}\right)\approx\mathrm{3}.\mathrm{423}<\mathrm{5} \\ $$$${that}\:{means}\:{for}\:−\mathrm{3}.\mathrm{5}\leqslant{x}<−\mathrm{3}\:{f}\left({x}\right)\neq{g}\left({x}\right) \\ $$$$\Rightarrow{for}\:{x}<−\mathrm{3}\:{f}\left({x}\right)={g}\left({x}\right)\:{has}\:{no}\:{solution}. \\ $$$${with}\:{x}>\mathrm{2}: \\ $$$${similarly}\:{to}\:{above}\:{f}\left({x}\right)={g}\left({x}\right)\:{has} \\ $$$${no}\:{solution}. \\ $$$${with}\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{2}: \\ $$$${f}\left({x}\right)=\mathrm{5} \\ $$$${f}\left({x}\right)={g}\left({x}\right) \\ $$$$\mathrm{5}=\mathrm{3}\left(\mathrm{1}−\mathrm{sin}\:{x}\right) \\ $$$$\Rightarrow\mathrm{sin}\:{x}=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}\:{or}\:−\pi+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$$${totally}: \\ $$$$\mid{x}+\mathrm{3}\mid+\mid{x}−\mathrm{2}\mid+\mathrm{3}{sinx}−\mathrm{3}=\mathrm{0}\:{has} \\ $$$$\mathrm{2}\:{solutions}: \\ $$$${x}=−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}\:{or}\:−\pi+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented by SLVR last updated on 19/Apr/23

Thanks a lot..Prof.W  god bless you sir

$${Thanks}\:{a}\:{lot}..{Prof}.{W} \\ $$$${god}\:{bless}\:{you}\:{sir} \\ $$

Answered by mehdee42 last updated on 19/Apr/23

let  f(x)= ∣x−2∣+∣x+3∣   &  g(x)=3−3sinx  ∀ x −3≤x≤2 →f(x)=5 ⇒5+3sinx−3=0⇒sinx=−(2/3)⇒x=−sin^(−1) ((2/3)) & −π+sin^(−1) ((2/3)) ✓  ∀ x<−3  , x>2 ⇒f(x)>g(x)⇒therefor the equation f(x)=g(x) has no solution.

$${let}\:\:{f}\left({x}\right)=\:\mid{x}−\mathrm{2}\mid+\mid{x}+\mathrm{3}\mid\:\:\:\&\:\:{g}\left({x}\right)=\mathrm{3}−\mathrm{3}{sinx} \\ $$$$\forall\:{x}\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{2}\:\rightarrow{f}\left({x}\right)=\mathrm{5}\:\Rightarrow\mathrm{5}+\mathrm{3}{sinx}−\mathrm{3}=\mathrm{0}\Rightarrow{sinx}=−\frac{\mathrm{2}}{\mathrm{3}}\Rightarrow{x}=−{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:\&\:−\pi+{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)\:\checkmark \\ $$$$\forall\:{x}<−\mathrm{3}\:\:,\:{x}>\mathrm{2}\:\Rightarrow{f}\left({x}\right)>{g}\left({x}\right)\Rightarrow{therefor}\:{the}\:{equation}\:{f}\left({x}\right)={g}\left({x}\right)\:{has}\:{no}\:{solution}. \\ $$

Commented by mehdee42 last updated on 19/Apr/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com