Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 212342 by hardmath last updated on 10/Oct/24

The number  abc^(−)  is divisible by 37.  Prove that bca^(−)  + cab^(−)  is divisible by 37.

$$\mathrm{The}\:\mathrm{number}\:\:\overline {\mathrm{abc}}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{37}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\overline {\mathrm{bca}}\:+\:\overline {\mathrm{cab}}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{37}.\: \\ $$

Answered by A5T last updated on 10/Oct/24

100a+10b+c≡−11a−27b+c=−(11a+27b−c)  ≡0(mod 37)  100b+10c+a+100c+10a+b=110c+101b+11a  ≡11a+27b−c≡(0 mod 37)

$$\mathrm{100}{a}+\mathrm{10}{b}+{c}\equiv−\mathrm{11}{a}−\mathrm{27}{b}+{c}=−\left(\mathrm{11}{a}+\mathrm{27}{b}−{c}\right) \\ $$$$\equiv\mathrm{0}\left({mod}\:\mathrm{37}\right) \\ $$$$\mathrm{100}{b}+\mathrm{10}{c}+{a}+\mathrm{100}{c}+\mathrm{10}{a}+{b}=\mathrm{110}{c}+\mathrm{101}{b}+\mathrm{11}{a} \\ $$$$\equiv\mathrm{11}{a}+\mathrm{27}{b}−{c}\equiv\left(\mathrm{0}\:{mod}\:\mathrm{37}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com