Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 482 by prakash jain last updated on 12/Jan/15

The number 1000! has certain number  of 0s at the end, what the the first non−zero  digit.  1000!=...d_1 d_2 d_3 D00000...  where d_1 ,d_2 ,d_3 ,D are digits.  Find the value of digit D.

$$\mathrm{The}\:\mathrm{number}\:\mathrm{1000}!\:\mathrm{has}\:\mathrm{certain}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{0}{s}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end},\:\mathrm{what}\:\mathrm{the}\:\mathrm{the}\:\mathrm{first}\:\mathrm{non}−\mathrm{zero} \\ $$$$\mathrm{digit}. \\ $$$$\mathrm{1000}!=...\mathrm{d}_{\mathrm{1}} \mathrm{d}_{\mathrm{2}} \mathrm{d}_{\mathrm{3}} \mathrm{D00000}... \\ $$$$\mathrm{where}\:\mathrm{d}_{\mathrm{1}} ,\mathrm{d}_{\mathrm{2}} ,\mathrm{d}_{\mathrm{3}} ,\mathrm{D}\:\mathrm{are}\:\mathrm{digits}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{digit}\:\mathrm{D}. \\ $$

Commented by 123456 last updated on 12/Jan/15

1000!  2×5=10  1000!≡0(mod 2^p )→max p  1000!≡0(mod 5^q )→max q  1000!≡0(mod 10^s )→max s≡min(max p,max q)

$$\mathrm{1000}! \\ $$$$\mathrm{2}×\mathrm{5}=\mathrm{10} \\ $$$$\mathrm{1000}!\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}^{\mathrm{p}} \right)\rightarrow\mathrm{max}\:\mathrm{p} \\ $$$$\mathrm{1000}!\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{5}^{\mathrm{q}} \right)\rightarrow\mathrm{max}\:\mathrm{q} \\ $$$$\mathrm{1000}!\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{10}^{\mathrm{s}} \right)\rightarrow\mathrm{max}\:\mathrm{s}\equiv\mathrm{min}\left(\mathrm{max}\:\mathrm{p},\mathrm{max}\:\mathrm{q}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com