Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 62753 by peter frank last updated on 24/Jun/19

The normal at the point  P(4cos θ,3sin θ) on the  ellipse (x^2 /(16)) +(y^2 /9)=1 meets  the x−axis and y−axis  at A and B respectively  show that locus of the  mid−point of AB is an  ellipse with the same  eccentricity as given  ellipse.

$${The}\:{normal}\:{at}\:{the}\:{point} \\ $$$${P}\left(\mathrm{4cos}\:\theta,\mathrm{3sin}\:\theta\right)\:{on}\:{the} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{\mathrm{16}}\:+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1}\:{meets} \\ $$$${the}\:{x}−{axis}\:{and}\:{y}−{axis} \\ $$$${at}\:{A}\:{and}\:{B}\:{respectively} \\ $$$${show}\:{that}\:{locus}\:{of}\:{the} \\ $$$${mid}−{point}\:{of}\:{AB}\:{is}\:{an} \\ $$$${ellipse}\:{with}\:{the}\:{same} \\ $$$${eccentricity}\:{as}\:{given} \\ $$$${ellipse}. \\ $$

Answered by Hope last updated on 25/Jun/19

eqn normal (y−3sinθ)=(((−dx)/dy))_((4cosθ,3sinθ))  (x−4cosθ)  (x^2 /(16))+(y^2 /9)=1  ((2x×(dx/dy))/(16))+((2y)/9)=0  ((x×(dx/dy))/8)=((−2y)/9)→(dx/dy)=((−16y)/(9x))=((−16×3sinθ)/(9×4cosθ))=((−4)/3)tanθ  (y−3sinθ)=((4tanθ)/3)(x−4cosθ)  put x=0  y−3sinθ=((4sinθ)/(3cosθ))×−4cosθ  y=3sinθ−((16sinθ)/3)=((−7sinθ)/3)  B(0,((−7sinθ)/3))  put y=0  −3sinθ=((4sinθ)/(3cosθ))(x−4cosθ)  x=((−9sinθcosθ)/(4sinθ))+4cosθ  x=((−9cosθ+16cosθ)/4)=((7cosθ)/4)A(((7cosθ)/4),0)  Mid point of AB=(((7cosθ)/8),((−7sinθ)/6))  locus α=((7cosθ)/8)   β=((−7sinθ)/6)  (((8α)/7))^2 +(((6β)/(−7)))^2 =1  locus  (x^2 /(((7/8))^2 ))+(y^2 /(((7/6))^2 ))=1  eccenrixity=((√(((7/6))^2 −((7/8))^2 ))/(7/6))=(6/7)×7×(√((64−36)/(8^2 ×6^2 )))  e_2 =(6/7)×7×(1/(8×6))×2(√7) =((√7)/4)  (x^2 /(16))+(y^2 /9)=1  e_1 =((√(16−9))/4)=((√7)/4)  so e_1 =e_2 =((√7)/4)proved

$${eqn}\:{normal}\:\left({y}−\mathrm{3}{sin}\theta\right)=\left(\frac{−{dx}}{{dy}}\right)_{\left(\mathrm{4}{cos}\theta,\mathrm{3}{sin}\theta\right)} \:\left({x}−\mathrm{4}{cos}\theta\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{16}}+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}×\frac{{dx}}{{dy}}}{\mathrm{16}}+\frac{\mathrm{2}{y}}{\mathrm{9}}=\mathrm{0} \\ $$$$\frac{{x}×\frac{{dx}}{{dy}}}{\mathrm{8}}=\frac{−\mathrm{2}{y}}{\mathrm{9}}\rightarrow\frac{{dx}}{{dy}}=\frac{−\mathrm{16}{y}}{\mathrm{9}{x}}=\frac{−\mathrm{16}×\mathrm{3}{sin}\theta}{\mathrm{9}×\mathrm{4}{cos}\theta}=\frac{−\mathrm{4}}{\mathrm{3}}{tan}\theta \\ $$$$\left({y}−\mathrm{3}{sin}\theta\right)=\frac{\mathrm{4}{tan}\theta}{\mathrm{3}}\left({x}−\mathrm{4}{cos}\theta\right) \\ $$$${put}\:{x}=\mathrm{0} \\ $$$${y}−\mathrm{3}{sin}\theta=\frac{\mathrm{4}{sin}\theta}{\mathrm{3}{cos}\theta}×−\mathrm{4}{cos}\theta \\ $$$${y}=\mathrm{3}{sin}\theta−\frac{\mathrm{16}{sin}\theta}{\mathrm{3}}=\frac{−\mathrm{7}{sin}\theta}{\mathrm{3}} \\ $$$${B}\left(\mathrm{0},\frac{−\mathrm{7}{sin}\theta}{\mathrm{3}}\right) \\ $$$${put}\:{y}=\mathrm{0} \\ $$$$−\mathrm{3}{sin}\theta=\frac{\mathrm{4}{sin}\theta}{\mathrm{3}{cos}\theta}\left({x}−\mathrm{4}{cos}\theta\right) \\ $$$${x}=\frac{−\mathrm{9}{sin}\theta{cos}\theta}{\mathrm{4}{sin}\theta}+\mathrm{4}{cos}\theta \\ $$$${x}=\frac{−\mathrm{9}{cos}\theta+\mathrm{16}{cos}\theta}{\mathrm{4}}=\frac{\mathrm{7}{cos}\theta}{\mathrm{4}}\boldsymbol{{A}}\left(\frac{\mathrm{7}{cos}\theta}{\mathrm{4}},\mathrm{0}\right) \\ $$$${Mid}\:{point}\:{of}\:{A}\boldsymbol{{B}}=\left(\frac{\mathrm{7}{cos}\theta}{\mathrm{8}},\frac{−\mathrm{7}{sin}\theta}{\mathrm{6}}\right) \\ $$$${locus}\:\alpha=\frac{\mathrm{7}{cos}\theta}{\mathrm{8}}\:\:\:\beta=\frac{−\mathrm{7}{sin}\theta}{\mathrm{6}} \\ $$$$\left(\frac{\mathrm{8}\alpha}{\mathrm{7}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{6}\beta}{−\mathrm{7}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${locus}\:\:\frac{{x}^{\mathrm{2}} }{\left(\frac{\mathrm{7}}{\mathrm{8}}\right)^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\left(\frac{\mathrm{7}}{\mathrm{6}}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$${eccenrixity}=\frac{\sqrt{\left(\frac{\mathrm{7}}{\mathrm{6}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{7}}{\mathrm{8}}\right)^{\mathrm{2}} }}{\frac{\mathrm{7}}{\mathrm{6}}}=\frac{\mathrm{6}}{\mathrm{7}}×\mathrm{7}×\sqrt{\frac{\mathrm{64}−\mathrm{36}}{\mathrm{8}^{\mathrm{2}} ×\mathrm{6}^{\mathrm{2}} }} \\ $$$${e}_{\mathrm{2}} =\frac{\mathrm{6}}{\mathrm{7}}×\mathrm{7}×\frac{\mathrm{1}}{\mathrm{8}×\mathrm{6}}×\mathrm{2}\sqrt{\mathrm{7}}\:=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{16}}+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1}\:\:{e}_{\mathrm{1}} =\frac{\sqrt{\mathrm{16}−\mathrm{9}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$${so}\:{e}_{\mathrm{1}} ={e}_{\mathrm{2}} =\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}{proved} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com