Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1777 by 112358 last updated on 22/Sep/15

The n positive numbers x_1 ,x_2 ,...x_n   where n≥3, satisfy   x_1 =1+(1/x_2 ),x_2 =1+(1/x_3 ), ... , x_(n−1) =1+(1/x_n )  and x_n =1+(1/x_1 ).   Show that x_1 =x_2 =x_3 =...=x_n .

$${The}\:{n}\:{positive}\:{numbers}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,...{x}_{{n}} \\ $$$${where}\:{n}\geqslant\mathrm{3},\:{satisfy}\: \\ $$$${x}_{\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{2}} },{x}_{\mathrm{2}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{3}} },\:...\:,\:{x}_{{n}−\mathrm{1}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{{n}} } \\ $$$${and}\:{x}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\mathrm{1}} }.\: \\ $$$${Show}\:{that}\:{x}_{\mathrm{1}} ={x}_{\mathrm{2}} ={x}_{\mathrm{3}} =...={x}_{{n}} . \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 26/Sep/15

This  problem can be translated in modulo form   as follows:           ′′ The n positive numbers x_0 , x_1 ,...,x_(n−1)   where n≥3, satisfy              x_(i  (mod n)) =1+(1/x_((i +1) (mod n)) )      , i∈{0,1,2,...}   Show that        x_0 =x_1 =x_2 =...=x_(n−2) =x_(n−1)     ′′  Let the above statment be denoted by P(n).  Then by mathematical induction  (1) P(n) should be proved for n=3.  (2) P(k) is supposed to be true and P(k+1) should be  proved  true.  (1) is easy but (2) is challenging.

$${This}\:\:{problem}\:{can}\:{be}\:{translated}\:{in}\:{modulo}\:{form}\: \\ $$$${as}\:{follows}: \\ $$$$\:\:\:\:\:\:\:\:\:''\:{The}\:{n}\:{positive}\:{numbers}\:{x}_{\mathrm{0}} ,\:{x}_{\mathrm{1}} ,...,{x}_{{n}−\mathrm{1}} \\ $$$${where}\:{n}\geqslant\mathrm{3},\:{satisfy}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{x}_{{i}\:\:\left({mod}\:{n}\right)} =\mathrm{1}+\frac{\mathrm{1}}{{x}_{\left({i}\:+\mathrm{1}\right)\:\left({mod}\:{n}\right)} }\:\:\:\:\:\:,\:{i}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},...\right\}\: \\ $$$${Show}\:{that} \\ $$$$\:\:\:\:\:\:{x}_{\mathrm{0}} ={x}_{\mathrm{1}} ={x}_{\mathrm{2}} =...={x}_{{n}−\mathrm{2}} ={x}_{{n}−\mathrm{1}} \:\:\:\:'' \\ $$$${Let}\:{the}\:{above}\:{statment}\:{be}\:{denoted}\:{by}\:{P}\left({n}\right). \\ $$$${Then}\:{by}\:{mathematical}\:{induction} \\ $$$$\left(\mathrm{1}\right)\:{P}\left({n}\right)\:{should}\:{be}\:{proved}\:{for}\:{n}=\mathrm{3}. \\ $$$$\left(\mathrm{2}\right)\:{P}\left({k}\right)\:{is}\:{supposed}\:{to}\:{be}\:{true}\:{and}\:{P}\left({k}+\mathrm{1}\right)\:{should}\:{be} \\ $$$${proved}\:\:{true}. \\ $$$$\left(\mathrm{1}\right)\:{is}\:{easy}\:{but}\:\left(\mathrm{2}\right)\:{is}\:{challenging}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com