Question Number 16740 by Tinkutara last updated on 26/Jun/17 | ||
$$\mathrm{The}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{cos}\:\left(\mathrm{33}\pi\:+\:\theta\right)\right)\:+\:\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:\left(\mathrm{45}\pi\:+\:\theta\right)\right) \\ $$$$\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{1}\:+\:\mathrm{cos}^{\mathrm{2}} \mathrm{1} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{cos}^{\mathrm{2}} \mathrm{2} \\ $$ | ||
Commented by ajfour last updated on 26/Jun/17 | ||
$$\mathrm{mrW1}\:\mathrm{Sir},\:\mathrm{please}\:\mathrm{see}\:\mathrm{to}\:\mathrm{this}\:\mathrm{question}.. \\ $$ | ||
Commented by Tinkutara last updated on 26/Jun/17 | ||
$$\mathrm{I}\:\mathrm{simplified}\:\mathrm{the}\:\mathrm{question}\:\mathrm{to} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{cos}\:\theta\right)\:+\:\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:\theta\right).\:\mathrm{I}\:\mathrm{put}\:\theta\:=\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{got}\:\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \mathrm{1}.\:\mathrm{But}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know} \\ $$$$\mathrm{why}\:\mathrm{it}\:\mathrm{has}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{at}\:\frac{\pi}{\mathrm{2}}. \\ $$ | ||
Commented by prakash jain last updated on 26/Jun/17 | ||
$${u}=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{cos}\:\theta\right)+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{sin}\:\theta\right) \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\left(\mathrm{2cos}\:\theta\right)−\mathrm{cos}\:\left(\mathrm{2sin}\:\theta\right)\right) \\ $$$${u}'=\mathrm{sin}\:\theta\mathrm{sin}\:\left(\mathrm{2cos}\:\theta\right)+\mathrm{cos}\:\theta\mathrm{sin}\:\left(\mathrm{2sin}\:\theta\right) \\ $$$$=\mathrm{sin}\:\theta\left\{\left(\mathrm{2cos}\:\theta\right)−\frac{\left(\mathrm{2cos}\theta\right)^{\mathrm{3}} }{\mathrm{3}!}+...\right\}+ \\ $$$$+\mathrm{cos}\:\theta\left\{\left(\mathrm{2sin}\:\theta\right)−\frac{\left(\mathrm{2sin}\:\theta\right)^{\mathrm{3}} }{\mathrm{3}!}+−..\right\} \\ $$$$=\mathrm{sin}\:\mathrm{2}\theta\left[\left\{\mathrm{1}−\frac{\left(\mathrm{2cos}\:\theta\right)^{\mathrm{2}} }{\mathrm{3}!}+..\right\}+\left\{\mathrm{1}−\frac{\left(\mathrm{2sin}\:\theta\right)^{\mathrm{2}} }{\mathrm{3}!}+..\right\}\right] \\ $$$${u}'=\mathrm{0}\:\mathrm{when}\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{0}\Rightarrow\:\theta=\mathrm{0},\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{double}\:\mathrm{derivate}\:\mathrm{will}\:\mathrm{give}\:\mathrm{us} \\ $$$$\mathrm{whether}\:\mathrm{it}\:\mathrm{is}\:\mathrm{maxima}\:\mathrm{or}\:\mathrm{minima}. \\ $$$$\mathrm{0}\:\mathrm{minima} \\ $$$$\frac{\pi}{\mathrm{2}}\:\mathrm{maxima} \\ $$ | ||
Answered by mrW1 last updated on 26/Jun/17 | ||
$$\mathrm{cos}\:\left(\mathrm{33}\pi\:+\:\theta\right)=−\mathrm{cos}\:\theta \\ $$$$\mathrm{sin}\:\left(\mathrm{45}\pi\:+\:\theta\right)=−\mathrm{sin}\:\theta \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{cos}\:\left(\mathrm{33}\pi\:+\:\theta\right)\right)\:+\:\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:\left(\mathrm{45}\pi\:+\:\theta\right)\right) \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\left(−\mathrm{cos}\:\theta\right)\:+\:\mathrm{sin}^{\mathrm{2}} \:\left(−\mathrm{sin}\:\theta\right) \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{cos}\:\theta\right)\:+\:\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{max}.\:\mathrm{is}\:\mathrm{when}\:\mathrm{cos}\:\theta=\mathrm{0}\:\mathrm{and}\:\mathrm{sin}\:\theta=\pm\mathrm{1} \\ $$$$\mathrm{or}\:\theta=\pm\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{max}.=\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\mathrm{answer}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{right}. \\ $$ | ||
Commented by Tinkutara last updated on 26/Jun/17 | ||
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$ | ||
Commented by ajfour last updated on 26/Jun/17 | ||
$$\mathrm{yes}\:\mathrm{Sir},\:\mathrm{obviously}! \\ $$ | ||
Commented by Tinkutara last updated on 26/Jun/17 | ||
$$\mathrm{Can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{said}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{an}\:\mathrm{increasing} \\ $$$$\mathrm{functiom}? \\ $$ | ||