Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 119386 by ZiYangLee last updated on 24/Oct/20

The length of a rectangle is decreased by 20%,  and the width is increased by x%,  but the area remains the same.  Find the value of x.

$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{is}\:\mathrm{decreased}\:\mathrm{by}\:\mathrm{20\%}, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{width}\:\mathrm{is}\:\mathrm{increased}\:\mathrm{by}\:{x\%}, \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{area}\:\mathrm{remains}\:\mathrm{the}\:\mathrm{same}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}. \\ $$

Answered by mr W last updated on 24/Oct/20

(1−((20)/(100)))L×(1+(x/(100)))W=L×W  (1−((20)/(100)))(1+(x/(100)))=1  1+(x/(100))=((100)/(80))  x=((100)/4)=25

$$\left(\mathrm{1}−\frac{\mathrm{20}}{\mathrm{100}}\right){L}×\left(\mathrm{1}+\frac{{x}}{\mathrm{100}}\right){W}={L}×{W} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{20}}{\mathrm{100}}\right)\left(\mathrm{1}+\frac{{x}}{\mathrm{100}}\right)=\mathrm{1} \\ $$$$\mathrm{1}+\frac{{x}}{\mathrm{100}}=\frac{\mathrm{100}}{\mathrm{80}} \\ $$$${x}=\frac{\mathrm{100}}{\mathrm{4}}=\mathrm{25} \\ $$

Commented by ZiYangLee last updated on 24/Oct/20

★

$$\bigstar \\ $$

Answered by som(math1967) last updated on 24/Oct/20

let length=lunit  width=b unit  ∴ ((80l)/(100))×(((100+x)b)/(100))=l×b  ⇒(100+x)=((100×100)/(80))  ∴x=125−100=25 ans

$${let}\:{length}={lunit} \\ $$$${width}={b}\:{unit} \\ $$$$\therefore\:\frac{\mathrm{80}{l}}{\mathrm{100}}×\frac{\left(\mathrm{100}+{x}\right){b}}{\mathrm{100}}={l}×{b} \\ $$$$\Rightarrow\left(\mathrm{100}+{x}\right)=\frac{\mathrm{100}×\mathrm{100}}{\mathrm{80}} \\ $$$$\therefore{x}=\mathrm{125}−\mathrm{100}=\mathrm{25}\:{ans} \\ $$

Commented by ZiYangLee last updated on 24/Oct/20

★

$$\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com