Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 14030 by Tinkutara last updated on 27/May/17

The general solution of equation  tan x tan 4x = 1 is  (1) (2n + 1)(π/(10)) , n ∈ Z − {n : n = 5k +2; k ∈ Z}  (2) (4n − 1)(π/(10)) , n ∈ Z  (3) ((nπ)/(10)) , n ∈ Z  (4) 2nπ + (π/(10)) , n ∈ Z

$$\mathrm{The}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{tan}\:{x}\:\mathrm{tan}\:\mathrm{4}{x}\:=\:\mathrm{1}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z}\:−\:\left\{{n}\::\:{n}\:=\:\mathrm{5}{k}\:+\mathrm{2};\:{k}\:\in\:{Z}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{4}{n}\:−\:\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{3}\right)\:\frac{{n}\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{2}{n}\pi\:+\:\frac{\pi}{\mathrm{10}}\:,\:{n}\:\in\:{Z} \\ $$

Answered by ajfour last updated on 27/May/17

tan (x+4x)=((tan x+tan 4x)/(1−tan xtan 4x))  tan xtan 4x=1  ⇒  (1/(tan 5x))=0  5x=nπ+(π/2)  x=((nπ)/5)+(π/(10)) =(2n+1)(π/(10))  ; n ∈ Z

$$\mathrm{tan}\:\left({x}+\mathrm{4}{x}\right)=\frac{\mathrm{tan}\:{x}+\mathrm{tan}\:\mathrm{4}{x}}{\mathrm{1}−\mathrm{tan}\:{x}\mathrm{tan}\:\mathrm{4}{x}} \\ $$$$\mathrm{tan}\:{x}\mathrm{tan}\:\mathrm{4}{x}=\mathrm{1}\:\:\Rightarrow\:\:\frac{\mathrm{1}}{\mathrm{tan}\:\mathrm{5}{x}}=\mathrm{0} \\ $$$$\mathrm{5}{x}={n}\pi+\frac{\pi}{\mathrm{2}} \\ $$$${x}=\frac{{n}\pi}{\mathrm{5}}+\frac{\pi}{\mathrm{10}}\:=\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{10}}\:\:;\:{n}\:\in\:{Z} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by Tinkutara last updated on 27/May/17

Option (1) is right but n ∉ Z instead  n ∈ Z − {n : n = 5k + 2; k ∈ Z}. Why?

$$\mathrm{Option}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{right}\:\mathrm{but}\:{n}\:\notin\:{Z}\:\mathrm{instead} \\ $$$${n}\:\in\:{Z}\:−\:\left\{{n}\::\:{n}\:=\:\mathrm{5}{k}\:+\:\mathrm{2};\:{k}\:\in\:{Z}\right\}.\:\mathrm{Why}? \\ $$

Commented by mrW1 last updated on 27/May/17

not every n is ok.   n should not be 2, 7,...  otherwise 4x=2π,4π,...  and tan 4x=0, this is not allowed,  since tan 4x×tan x=1≠0

$${not}\:{every}\:{n}\:{is}\:{ok}.\: \\ $$$${n}\:{should}\:{not}\:{be}\:\mathrm{2},\:\mathrm{7},... \\ $$$${otherwise}\:\mathrm{4}{x}=\mathrm{2}\pi,\mathrm{4}\pi,... \\ $$$${and}\:\mathrm{tan}\:\mathrm{4}{x}=\mathrm{0},\:{this}\:{is}\:{not}\:{allowed}, \\ $$$${since}\:\mathrm{tan}\:\mathrm{4}{x}×\mathrm{tan}\:{x}=\mathrm{1}\neq\mathrm{0} \\ $$

Commented by Tinkutara last updated on 27/May/17

Thanks.

$$\mathrm{Thanks}. \\ $$

Commented by ajfour last updated on 27/May/17

very true, and also  n≠(((5m−2))/4)  , m∈Z  since with the definition  x=(π/(10))+n(π/5)     [option (1)]  •  tan x is never =0  •  tan 5x is never zero and always       not defined (which is required       for tan xtan 4x =1)  •   tan x is not defined for        two locations out of ten.  •   tan 4x is zero for two locations        out of five   first and second are good points  third and fourth not so good.  so  we should ensure     for tan x≠ undefined      x=(π/(10))+n(π/5)≠kπ+(π/2)  ⇒   n≠ 5k+2 ,  k∈ Z    also for   tan 4x≠ 0  4x=4((π/(10))+n(π/5))≠mπ  ⇒  (2/5)+((4n)/5)≠m   or   n≠ ((5m−2)/4) ,  m ∈ Z  .

$${very}\:{true},\:{and}\:{also} \\ $$$${n}\neq\frac{\left(\mathrm{5}{m}−\mathrm{2}\right)}{\mathrm{4}}\:\:,\:{m}\in{Z} \\ $$$${since}\:{with}\:{the}\:{definition} \\ $$$${x}=\frac{\pi}{\mathrm{10}}+{n}\frac{\pi}{\mathrm{5}}\:\:\:\:\:\left[{option}\:\left(\mathrm{1}\right)\right] \\ $$$$\bullet\:\:\mathrm{tan}\:{x}\:{is}\:{never}\:=\mathrm{0} \\ $$$$\bullet\:\:\mathrm{tan}\:\mathrm{5}{x}\:{is}\:{never}\:{zero}\:{and}\:{always} \\ $$$$\:\:\:\:\:{not}\:{defined}\:\left({which}\:{is}\:{required}\right. \\ $$$$\left.\:\:\:\:\:{for}\:\mathrm{tan}\:{x}\mathrm{tan}\:\mathrm{4}{x}\:=\mathrm{1}\right) \\ $$$$\bullet\:\:\:\mathrm{tan}\:{x}\:{is}\:{not}\:{defined}\:{for} \\ $$$$\:\:\:\:\:\:{two}\:{locations}\:{out}\:{of}\:{ten}. \\ $$$$\bullet\:\:\:\mathrm{tan}\:\mathrm{4}{x}\:{is}\:{zero}\:{for}\:{two}\:{locations} \\ $$$$\:\:\:\:\:\:{out}\:{of}\:{five}\: \\ $$$${first}\:{and}\:{second}\:{are}\:{good}\:{points} \\ $$$${third}\:{and}\:{fourth}\:{not}\:{so}\:{good}. \\ $$$$\mathrm{so}\:\:\mathrm{we}\:\mathrm{should}\:\mathrm{ensure} \\ $$$$\:\:\:{for}\:\mathrm{tan}\:{x}\neq\:{undefined}\: \\ $$$$\:\:\:{x}=\frac{\pi}{\mathrm{10}}+{n}\frac{\pi}{\mathrm{5}}\neq{k}\pi+\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{n}\neq\:\mathrm{5}{k}+\mathrm{2}\:,\:\:{k}\in\:{Z} \\ $$$$\:\:{also}\:{for}\:\:\:\mathrm{tan}\:\mathrm{4}{x}\neq\:\mathrm{0} \\ $$$$\mathrm{4}{x}=\mathrm{4}\left(\frac{\pi}{\mathrm{10}}+{n}\frac{\pi}{\mathrm{5}}\right)\neq{m}\pi \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}}{\mathrm{5}}+\frac{\mathrm{4}{n}}{\mathrm{5}}\neq{m}\: \\ $$$${or}\:\:\:{n}\neq\:\frac{\mathrm{5}{m}−\mathrm{2}}{\mathrm{4}}\:,\:\:{m}\:\in\:{Z}\:\:. \\ $$

Commented by Tinkutara last updated on 27/May/17

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com