Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 13811 by Tinkutara last updated on 23/May/17

The domain of f(x) = (√(2 − 2^x  − 2^(2x) )) is?

$$\mathrm{The}\:\mathrm{domain}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\sqrt{\mathrm{2}\:−\:\mathrm{2}^{{x}} \:−\:\mathrm{2}^{\mathrm{2}{x}} }\:\mathrm{is}? \\ $$

Commented by RasheedSindhi last updated on 24/May/17

Sorry, wrong process.

$$\mathrm{Sorry},\:\mathrm{wrong}\:\mathrm{process}. \\ $$

Answered by ajfour last updated on 23/May/17

let 2^x =t >0    ....(i)  ⇒ t^2 +t−2≤0  t^2 +2t−t−2≤0  (t−1)(t+2)≤0  ⇒       −2≤t≤1    ....(ii)  from (i) and (ii),  0<t(=2^x )≤1  ⇒ x∈(−∞, 0] .

$${let}\:\mathrm{2}^{{x}} ={t}\:>\mathrm{0}\:\:\:\:....\left({i}\right) \\ $$$$\Rightarrow\:{t}^{\mathrm{2}} +{t}−\mathrm{2}\leqslant\mathrm{0} \\ $$$${t}^{\mathrm{2}} +\mathrm{2}{t}−{t}−\mathrm{2}\leqslant\mathrm{0} \\ $$$$\left({t}−\mathrm{1}\right)\left({t}+\mathrm{2}\right)\leqslant\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\:\:−\mathrm{2}\leqslant{t}\leqslant\mathrm{1}\:\:\:\:....\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right), \\ $$$$\mathrm{0}<{t}\left(=\mathrm{2}^{{x}} \right)\leqslant\mathrm{1} \\ $$$$\Rightarrow\:{x}\in\left(−\infty,\:\mathrm{0}\right]\:. \\ $$

Commented by Tinkutara last updated on 23/May/17

Thanks.

$$\mathrm{Thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com