Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 86499 by ram roop sharma last updated on 29/Mar/20

The digit at unit′s place in the number  17^(1995) + 11^(1995) −7^(1995)   is

$$\mathrm{The}\:\mathrm{digit}\:\mathrm{at}\:\mathrm{unit}'\mathrm{s}\:\mathrm{place}\:\mathrm{in}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{17}^{\mathrm{1995}} +\:\mathrm{11}^{\mathrm{1995}} −\mathrm{7}^{\mathrm{1995}} \:\:\mathrm{is} \\ $$

Commented by Serlea last updated on 29/Mar/20

17^(1995) +11^(1995) −7^(1995) =11^(1995) (mod10)  {17=7(mod10)}  11=1(mod)  11^(1995) =1(mod)  1

$$\mathrm{17}^{\mathrm{1995}} +\mathrm{11}^{\mathrm{1995}} −\mathrm{7}^{\mathrm{1995}} =\mathrm{11}^{\mathrm{1995}} \left(\mathrm{mod10}\right) \\ $$$$\left\{\mathrm{17}=\mathrm{7}\left(\mathrm{mod10}\right)\right\} \\ $$$$\mathrm{11}=\mathrm{1}\left(\mathrm{mod}\right) \\ $$$$\mathrm{11}^{\mathrm{1995}} =\mathrm{1}\left(\mathrm{mod}\right) \\ $$$$\mathrm{1} \\ $$

Answered by redmiiuser last updated on 29/Mar/20

1  as we know that the  unit digit of 17^5  and 7^5  and 7  and that of 11^5  is 1  so same with 17^(1995)  ,7^(1995)   and 11^(1995)  the unit digits  are 7 and 1.  now 7+1−7=1

$$\mathrm{1} \\ $$$${as}\:{we}\:{know}\:{that}\:{the} \\ $$$${unit}\:{digit}\:{of}\:\mathrm{17}^{\mathrm{5}} \:{and}\:\mathrm{7}^{\mathrm{5}} \:{and}\:\mathrm{7} \\ $$$${and}\:{that}\:{of}\:\mathrm{11}^{\mathrm{5}} \:{is}\:\mathrm{1} \\ $$$${so}\:{same}\:{with}\:\mathrm{17}^{\mathrm{1995}} \:,\mathrm{7}^{\mathrm{1995}} \\ $$$${and}\:\mathrm{11}^{\mathrm{1995}} \:{the}\:{unit}\:{digits} \\ $$$${are}\:\mathrm{7}\:{and}\:\mathrm{1}. \\ $$$${now}\:\mathrm{7}+\mathrm{1}−\mathrm{7}=\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com