Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 52124 by 786786AM last updated on 03/Jan/19

The curve y = ax + (b/(2x− 1)) has the stationary point at  (2, 7) . Find the value of a and b .

$$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}\:=\:\mathrm{ax}\:+\:\frac{\mathrm{b}}{\mathrm{2x}−\:\mathrm{1}}\:\mathrm{has}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\:\left(\mathrm{2},\:\mathrm{7}\right)\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19

2xy−y=2ax^2 −ax+b  partial derivative w.r.t x  2y−0=4ax−a  14=8a−a  a=7  y=ax+(b/(2x−1))  7=7×2+(b/(2×2−1))  (b/3)=−7  b=−21    pls check is it correct...

$$\mathrm{2}{xy}−{y}=\mathrm{2}{ax}^{\mathrm{2}} −{ax}+{b} \\ $$$${partial}\:{derivative}\:{w}.{r}.{t}\:{x} \\ $$$$\mathrm{2}{y}−\mathrm{0}=\mathrm{4}{ax}−{a} \\ $$$$\mathrm{14}=\mathrm{8}{a}−{a} \\ $$$${a}=\mathrm{7} \\ $$$${y}={ax}+\frac{{b}}{\mathrm{2}{x}−\mathrm{1}} \\ $$$$\mathrm{7}=\mathrm{7}×\mathrm{2}+\frac{{b}}{\mathrm{2}×\mathrm{2}−\mathrm{1}} \\ $$$$\frac{{b}}{\mathrm{3}}=−\mathrm{7} \\ $$$${b}=−\mathrm{21} \\ $$$$ \\ $$$${pls}\:{check}\:{is}\:{it}\:{correct}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com