Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 56749 by pete last updated on 22/Mar/19

The curve y=ax^2 +bx+c crosses the  y−axis at the point (0,3) and has  stationary point at (1,2). Find the  values of a,b and c.

$$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}=\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}\:\mathrm{crosses}\:\mathrm{the} \\ $$$$\mathrm{y}−\mathrm{axis}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{3}\right)\:\mathrm{and}\:\mathrm{has} \\ $$$$\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\left(\mathrm{1},\mathrm{2}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}. \\ $$

Answered by ajfour last updated on 22/Mar/19

c=3  2a(1)+b=0  2=a+b+3  ⇒2a+2=a+3   ⇒  a=1  and b=−2 .    y=x^2 −2x+3 .

$$\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{2a}\left(\mathrm{1}\right)+\mathrm{b}=\mathrm{0} \\ $$$$\mathrm{2}=\mathrm{a}+\mathrm{b}+\mathrm{3} \\ $$$$\Rightarrow\mathrm{2a}+\mathrm{2}=\mathrm{a}+\mathrm{3}\:\:\:\Rightarrow\:\:\mathrm{a}=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{b}=−\mathrm{2}\:. \\ $$$$\:\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{3}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com