Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 21670 by Tinkutara last updated on 30/Sep/17

The block of mass 2 kg and 3 kg are  placed one over the other. The contact  surfaces are rough with coefficient of  friction μ_1  = 0.2, μ_2  = 0.06. A force F =  (1/2)t N (where t is in second) is applied  on upper block in the direction. (Given  that g = 10 m/s^2 )  1. The relative slipping between the  blocks occurs at t =  2. Friction force acting between the two  blocks at t = 8 s  3. The acceleration time graph for 3 kg  block is

$$\mathrm{The}\:\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{3}\:\mathrm{kg}\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{one}\:\mathrm{over}\:\mathrm{the}\:\mathrm{other}.\:\mathrm{The}\:\mathrm{contact} \\ $$$$\mathrm{surfaces}\:\mathrm{are}\:\mathrm{rough}\:\mathrm{with}\:\mathrm{coefficient}\:\mathrm{of} \\ $$$$\mathrm{friction}\:\mu_{\mathrm{1}} \:=\:\mathrm{0}.\mathrm{2},\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\mathrm{06}.\:\mathrm{A}\:\mathrm{force}\:{F}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{t}\:\mathrm{N}\:\left(\mathrm{where}\:{t}\:\mathrm{is}\:\mathrm{in}\:\mathrm{second}\right)\:\mathrm{is}\:\mathrm{applied} \\ $$$$\mathrm{on}\:\mathrm{upper}\:\mathrm{block}\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}.\:\left(\mathrm{Given}\right. \\ $$$$\left.\mathrm{that}\:{g}\:=\:\mathrm{10}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$$$\mathrm{1}.\:\mathrm{The}\:\mathrm{relative}\:\mathrm{slipping}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{occurs}\:\mathrm{at}\:{t}\:= \\ $$$$\mathrm{2}.\:\mathrm{Friction}\:\mathrm{force}\:\mathrm{acting}\:\mathrm{between}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{blocks}\:\mathrm{at}\:{t}\:=\:\mathrm{8}\:\mathrm{s} \\ $$$$\mathrm{3}.\:\mathrm{The}\:\mathrm{acceleration}\:\mathrm{time}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{3}\:\mathrm{kg} \\ $$$$\mathrm{block}\:\mathrm{is} \\ $$

Commented by Tinkutara last updated on 30/Sep/17

Answered by ajfour last updated on 30/Sep/17

At t=6s , F=3N  f_1 =3N backward on 2kg and  forward on 3kg.  f_2 =3N (limiting value) backward  on 3kg.  ⇒ onset of acceleration at t=6s  At t=8s , F=4N  f_1 −f_2 =3a  ⇒   f_1 −3=3a   ...(i)  F−f_1 =2a  ⇒  4−f_1 =2a    ....(ii)  so       2f_1 −6=12−3f_1   ⇒      5f_1 =18    ;   f_1 =3.6N .

$${At}\:{t}=\mathrm{6}{s}\:,\:{F}=\mathrm{3}{N} \\ $$$${f}_{\mathrm{1}} =\mathrm{3}{N}\:{backward}\:{on}\:\mathrm{2}{kg}\:{and} \\ $$$${forward}\:{on}\:\mathrm{3}{kg}. \\ $$$${f}_{\mathrm{2}} =\mathrm{3}{N}\:\left({limiting}\:{value}\right)\:{backward} \\ $$$${on}\:\mathrm{3}{kg}. \\ $$$$\Rightarrow\:{onset}\:{of}\:{acceleration}\:{at}\:{t}=\mathrm{6}{s} \\ $$$${At}\:{t}=\mathrm{8}{s}\:,\:{F}=\mathrm{4}{N} \\ $$$${f}_{\mathrm{1}} −{f}_{\mathrm{2}} =\mathrm{3}{a}\:\:\Rightarrow\:\:\:{f}_{\mathrm{1}} −\mathrm{3}=\mathrm{3}{a}\:\:\:...\left({i}\right) \\ $$$${F}−{f}_{\mathrm{1}} =\mathrm{2}{a}\:\:\Rightarrow\:\:\mathrm{4}−{f}_{\mathrm{1}} =\mathrm{2}{a}\:\:\:\:....\left({ii}\right) \\ $$$${so}\:\:\:\:\:\:\:\mathrm{2}{f}_{\mathrm{1}} −\mathrm{6}=\mathrm{12}−\mathrm{3}{f}_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:\:\:\mathrm{5}{f}_{\mathrm{1}} =\mathrm{18}\:\:\:\:;\:\:\:\boldsymbol{{f}}_{\mathrm{1}} =\mathrm{3}.\mathrm{6}\boldsymbol{{N}}\:. \\ $$

Commented by Tinkutara last updated on 30/Sep/17

Thank you very much Sir!  Can you answer other 2? Because they  do not match answer.

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{answer}\:\mathrm{other}\:\mathrm{2}?\:\mathrm{Because}\:\mathrm{they} \\ $$$$\mathrm{do}\:\mathrm{not}\:\mathrm{match}\:\mathrm{answer}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com