Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 63152 by Rio Michael last updated on 29/Jun/19

The Variables x and y satisfy the differential equation    (d^2 y/dx^2 )−x(dy/dx) + y = x^2   use the approximations     ((d^2 y/dx^2 ))_n ≈ ((y_(n+1) −2y_n +y_(n−1) )/h^(2 ) ) and  ((dy/dx))≈((y_(n+1) −y_(n−1) )/(2h )) to show that    (2−hx_n )y_(n+1) ≈2x_n ^2  + 398y_n −(200 + 10x_n )y_(n−1)   given that y=1 and x=0 and that y_(−1) =y_1  show that y_1 =0.995  Evaluate y when x=0.3, giving your answercorrect to 3 decimal places

$${The}\:{Variables}\:{x}\:{and}\:{y}\:{satisfy}\:{the}\:{differential}\:{equation}\: \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−{x}\frac{{dy}}{{dx}}\:+\:{y}\:=\:{x}^{\mathrm{2}} \:\:{use}\:{the}\:{approximations} \\ $$$$\:\:\:\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)_{{n}} \approx\:\frac{{y}_{{n}+\mathrm{1}} −\mathrm{2}{y}_{{n}} +{y}_{{n}−\mathrm{1}} }{{h}^{\mathrm{2}\:} }\:{and}\:\:\left(\frac{{dy}}{{dx}}\right)\approx\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{\mathrm{2}{h}\:}\:{to}\:{show}\:{that} \\ $$$$\:\:\left(\mathrm{2}−{hx}_{{n}} \right){y}_{{n}+\mathrm{1}} \approx\mathrm{2}{x}_{{n}} ^{\mathrm{2}} \:+\:\mathrm{398}{y}_{{n}} −\left(\mathrm{200}\:+\:\mathrm{10}{x}_{{n}} \right){y}_{{n}−\mathrm{1}} \\ $$$${given}\:{that}\:{y}=\mathrm{1}\:{and}\:{x}=\mathrm{0}\:{and}\:{that}\:{y}_{−\mathrm{1}} ={y}_{\mathrm{1}} \:{show}\:{that}\:{y}_{\mathrm{1}} =\mathrm{0}.\mathrm{995} \\ $$$${Evaluate}\:{y}\:{when}\:{x}=\mathrm{0}.\mathrm{3},\:{giving}\:{your}\:{answercorrect}\:{to}\:\mathrm{3}\:{decimal}\:{places} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com