Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 77033 by necxxx last updated on 02/Jan/20

Suppose the population models of London  and Hongkong in tens of thousands are  p(t)=((20t)/(t+1)) and q(t)=((240t)/(t+8)) respectively for  t years after 2015, Determine the time period  in years when the population of London  exceeds that of HongKong.

$${Suppose}\:{the}\:{population}\:{models}\:{of}\:{London} \\ $$$${and}\:{Hongkong}\:{in}\:{tens}\:{of}\:{thousands}\:{are} \\ $$$${p}\left({t}\right)=\frac{\mathrm{20}{t}}{{t}+\mathrm{1}}\:{and}\:{q}\left({t}\right)=\frac{\mathrm{240}{t}}{{t}+\mathrm{8}}\:{respectively}\:{for} \\ $$$${t}\:{years}\:{after}\:\mathrm{2015},\:{Determine}\:{the}\:{time}\:{period} \\ $$$${in}\:{years}\:{when}\:{the}\:{population}\:{of}\:{London} \\ $$$${exceeds}\:{that}\:{of}\:{HongKong}. \\ $$

Commented by MJS last updated on 02/Jan/20

for 2015 (t=0) both are zero?!  the limits for x→∞ are p(∞)=20, q(∞)=240  p(t)=q(t) ⇒ t=0∨t=−(4/(11))

$$\mathrm{for}\:\mathrm{2015}\:\left({t}=\mathrm{0}\right)\:\mathrm{both}\:\mathrm{are}\:\mathrm{zero}?! \\ $$$$\mathrm{the}\:\mathrm{limits}\:\mathrm{for}\:{x}\rightarrow\infty\:\mathrm{are}\:{p}\left(\infty\right)=\mathrm{20},\:{q}\left(\infty\right)=\mathrm{240} \\ $$$${p}\left({t}\right)={q}\left({t}\right)\:\Rightarrow\:{t}=\mathrm{0}\vee{t}=−\frac{\mathrm{4}}{\mathrm{11}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com