Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 12442 by tawa last updated on 22/Apr/17

Solve:   z^4  = − 16

$$\mathrm{Solve}:\:\:\:\mathrm{z}^{\mathrm{4}} \:=\:−\:\mathrm{16} \\ $$

Answered by ajfour last updated on 22/Apr/17

z^4 =2^4 e^(i(π+2kπ))   z=2e^(i((π/4)+((2kπ)/4) ))       ∀ k=0,1,−1,−2  so z_1 =2[cos (π/4)+isin (π/4)]  z_2 =2[cos (3π/4)+isin (3π/4)]  z_3 =2[cos (−π/4)+isin (−π/4)]  z_4 =2[cos (−3π/4)+isin (−3π/4)]  to summarize  z=(√2)(±1±i) .

$${z}^{\mathrm{4}} =\mathrm{2}^{\mathrm{4}} {e}^{{i}\left(\pi+\mathrm{2}{k}\pi\right)} \\ $$$${z}=\mathrm{2}{e}^{{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{2}{k}\pi}{\mathrm{4}}\:\right)} \:\:\:\:\:\:\forall\:{k}=\mathrm{0},\mathrm{1},−\mathrm{1},−\mathrm{2} \\ $$$${so}\:{z}_{\mathrm{1}} =\mathrm{2}\left[\mathrm{cos}\:\left(\pi/\mathrm{4}\right)+{i}\mathrm{sin}\:\left(\pi/\mathrm{4}\right)\right] \\ $$$${z}_{\mathrm{2}} =\mathrm{2}\left[\mathrm{cos}\:\left(\mathrm{3}\pi/\mathrm{4}\right)+{i}\mathrm{sin}\:\left(\mathrm{3}\pi/\mathrm{4}\right)\right] \\ $$$${z}_{\mathrm{3}} =\mathrm{2}\left[\mathrm{cos}\:\left(−\pi/\mathrm{4}\right)+{i}\mathrm{sin}\:\left(−\pi/\mathrm{4}\right)\right] \\ $$$${z}_{\mathrm{4}} =\mathrm{2}\left[\mathrm{cos}\:\left(−\mathrm{3}\pi/\mathrm{4}\right)+{i}\mathrm{sin}\:\left(−\mathrm{3}\pi/\mathrm{4}\right)\right] \\ $$$${to}\:{summarize} \\ $$$${z}=\sqrt{\mathrm{2}}\left(\pm\mathrm{1}\pm{i}\right)\:. \\ $$

Commented by tawa last updated on 22/Apr/17

I really appreciate sir. God bless you.

$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Answered by mrW1 last updated on 23/Apr/17

let z=r(cos θ+isin θ)  z^4 =r^4 (cos 4θ+isin 4θ)=−16  r^4 =16⇒r=2  sin 4θ=0  cos 4θ=−1  ⇒4θ=(2n−1)π  ⇒θ=n(π/2)−(π/4)  cos θ=±((√2)/2)  sin θ=±((√2)/2)  ⇒z=2(±((√2)/2)±i((√2)/2))=(√2)(±1±1i)

$${let}\:{z}={r}\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right) \\ $$$${z}^{\mathrm{4}} ={r}^{\mathrm{4}} \left(\mathrm{cos}\:\mathrm{4}\theta+{i}\mathrm{sin}\:\mathrm{4}\theta\right)=−\mathrm{16} \\ $$$${r}^{\mathrm{4}} =\mathrm{16}\Rightarrow{r}=\mathrm{2} \\ $$$$\mathrm{sin}\:\mathrm{4}\theta=\mathrm{0} \\ $$$$\mathrm{cos}\:\mathrm{4}\theta=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{4}\theta=\left(\mathrm{2}{n}−\mathrm{1}\right)\pi \\ $$$$\Rightarrow\theta={n}\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{cos}\:\theta=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow{z}=\mathrm{2}\left(\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\pm{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)=\sqrt{\mathrm{2}}\left(\pm\mathrm{1}\pm\mathrm{1}{i}\right) \\ $$

Commented by tawa last updated on 23/Apr/17

I appreciate sir. God bless you sir.

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com