Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 11268 by tawa last updated on 18/Mar/17

Solve x, y and z in terms of p, q and r  yz = py + qz     ........ (i)  zx = qz + rx      ....... (ii)  xy = rx + py     ....... (iii)

$$\mathrm{Solve}\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{p},\:\mathrm{q}\:\mathrm{and}\:\mathrm{r} \\ $$$$\mathrm{yz}\:=\:\mathrm{py}\:+\:\mathrm{qz}\:\:\:\:\:........\:\left(\mathrm{i}\right) \\ $$$$\mathrm{zx}\:=\:\mathrm{qz}\:+\:\mathrm{rx}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{xy}\:=\:\mathrm{rx}\:+\:\mathrm{py}\:\:\:\:\:.......\:\left(\mathrm{iii}\right) \\ $$

Answered by mrW1 last updated on 18/Mar/17

(iii)⇒y=((rx)/(x−p))  (i)⇒z=((py)/(y−q))=(p/(1−(q/y)))=(p/(1−((q(x−p))/(rx))))  (ii)⇒z=((rx)/(x−q))  ⇒((rx)/(x−q))=(p/(1−((q(x−p))/(rx))))  rx[1−((q(x−p))/(rx))]=p(x−q)  rx−q(x−p)=p(x−q)  (p+q−r)x=2pq  ⇒x=((2pq)/(p+q−r))  similarly  ⇒y=((2qr)/(q+r−p))  ⇒z=((2pr)/(p+r−q))

$$\left({iii}\right)\Rightarrow{y}=\frac{{rx}}{{x}−{p}} \\ $$$$\left({i}\right)\Rightarrow{z}=\frac{{py}}{{y}−{q}}=\frac{{p}}{\mathrm{1}−\frac{{q}}{{y}}}=\frac{{p}}{\mathrm{1}−\frac{{q}\left({x}−{p}\right)}{{rx}}} \\ $$$$\left({ii}\right)\Rightarrow{z}=\frac{{rx}}{{x}−{q}} \\ $$$$\Rightarrow\frac{{rx}}{{x}−{q}}=\frac{{p}}{\mathrm{1}−\frac{{q}\left({x}−{p}\right)}{{rx}}} \\ $$$${rx}\left[\mathrm{1}−\frac{{q}\left({x}−{p}\right)}{{rx}}\right]={p}\left({x}−{q}\right) \\ $$$${rx}−{q}\left({x}−{p}\right)={p}\left({x}−{q}\right) \\ $$$$\left({p}+{q}−{r}\right){x}=\mathrm{2}{pq} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}{pq}}{{p}+{q}−{r}} \\ $$$${similarly} \\ $$$$\Rightarrow{y}=\frac{\mathrm{2}{qr}}{{q}+{r}−{p}} \\ $$$$\Rightarrow{z}=\frac{\mathrm{2}{pr}}{{p}+{r}−{q}} \\ $$

Commented by tawa last updated on 18/Mar/17

God bless you sir. i really appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Commented by tawa last updated on 18/Mar/17

please sir. i need the cubic equation formulars you posted sometimes ago.

$$\mathrm{please}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{need}\:\mathrm{the}\:\mathrm{cubic}\:\mathrm{equation}\:\mathrm{formulars}\:\mathrm{you}\:\mathrm{posted}\:\mathrm{sometimes}\:\mathrm{ago}. \\ $$

Commented by mrW1 last updated on 18/Mar/17

Commented by tawa last updated on 18/Mar/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 19/Mar/17

  the system of this equations have one  more answers:  x=y=z=0

$$ \\ $$$${the}\:{system}\:{of}\:{this}\:{equations}\:{have}\:{one} \\ $$$${more}\:{answers}:\:\:{x}={y}={z}=\mathrm{0} \\ $$

Commented by mrW1 last updated on 19/Mar/17

you are right. this case should be considered  in the step 2.

$${you}\:{are}\:{right}.\:{this}\:{case}\:{should}\:{be}\:{considered} \\ $$$${in}\:{the}\:{step}\:\mathrm{2}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com