Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 15262 by Tinkutara last updated on 08/Jun/17

Solve : x^2  − 6x + [x] + 7 = 0.

$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\left[{x}\right]\:+\:\mathrm{7}\:=\:\mathrm{0}. \\ $$

Commented by ajfour last updated on 08/Jun/17

(x−3)^2 =2−[x]  No solution .

$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{2}−\left[{x}\right] \\ $$$${No}\:{solution}\:. \\ $$

Commented by mrW1 last updated on 08/Jun/17

what were if x^2  − 6x + [x] + 5 = 0?

$$\mathrm{what}\:\mathrm{were}\:\mathrm{if}\:{x}^{\mathrm{2}} \:−\:\mathrm{6}{x}\:+\:\left[{x}\right]\:+\:\mathrm{5}\:=\:\mathrm{0}? \\ $$

Commented by Tinkutara last updated on 09/Jun/17

Any explanation ajfour Sir?

$$\mathrm{Any}\:\mathrm{explanation}\:\mathrm{ajfour}\:\mathrm{Sir}? \\ $$

Commented by ajfour last updated on 09/Jun/17

yes Q.15288 (i tried to upload  image here, it got uploaded as  question).

$${yes}\:{Q}.\mathrm{15288}\:\left({i}\:{tried}\:{to}\:{upload}\right. \\ $$$${image}\:{here},\:{it}\:{got}\:{uploaded}\:{as} \\ $$$$\left.{question}\right). \\ $$

Commented by Tinkutara last updated on 09/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 11/Jun/17

How to solve such equations without  using graph? For example  x^2 −6x+[x]+5=0

$$\mathrm{How}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{such}\:\mathrm{equations}\:\mathrm{without} \\ $$$$\mathrm{using}\:\mathrm{graph}?\:\mathrm{For}\:\mathrm{example} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\left[\mathrm{x}\right]+\mathrm{5}=\mathrm{0} \\ $$

Commented by Tinkutara last updated on 13/Jun/17

Sir I found a good method. We will  write [x] = x − {x} and because we know  that 0 ≤ {x} < 1, we will use this range  in the quadratic expression so formed.  Thus we can solve such type of  questions without graph.

$$\mathrm{Sir}\:\mathrm{I}\:\mathrm{found}\:\mathrm{a}\:\mathrm{good}\:\mathrm{method}.\:\mathrm{We}\:\mathrm{will} \\ $$$$\mathrm{write}\:\left[{x}\right]\:=\:{x}\:−\:\left\{{x}\right\}\:\mathrm{and}\:\mathrm{because}\:\mathrm{we}\:\mathrm{know} \\ $$$$\mathrm{that}\:\mathrm{0}\:\leqslant\:\left\{{x}\right\}\:<\:\mathrm{1},\:\mathrm{we}\:\mathrm{will}\:\mathrm{use}\:\mathrm{this}\:\mathrm{range} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{expression}\:\mathrm{so}\:\mathrm{formed}. \\ $$$$\mathrm{Thus}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{such}\:\mathrm{type}\:\mathrm{of} \\ $$$$\mathrm{questions}\:\mathrm{without}\:\mathrm{graph}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com