Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 114592 by Aziztisffola last updated on 19/Sep/20

Solve : x^2 +2x−1≡0(mod 3)

$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$

Answered by MJS_new last updated on 19/Sep/20

x^2 +2x−1=3k with k∈Z  ⇒ x=−1±(√(3k+2))  if x∈R ⇒ k∈N

$${x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}=\mathrm{3}{k}\:\mathrm{with}\:{k}\in\mathbb{Z} \\ $$$$\Rightarrow\:{x}=−\mathrm{1}\pm\sqrt{\mathrm{3}{k}+\mathrm{2}} \\ $$$$\mathrm{if}\:{x}\in\mathbb{R}\:\Rightarrow\:{k}\in\mathbb{N} \\ $$

Commented by Aziztisffola last updated on 19/Sep/20

 x also in Z. wich k?

$$\:{x}\:{also}\:{in}\:\mathbb{Z}.\:\mathrm{wich}\:{k}? \\ $$

Commented by Aziztisffola last updated on 19/Sep/20

2+3k   is not a perfect square.

$$\mathrm{2}+\mathrm{3}{k}\:\:\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}. \\ $$

Commented by MJS_new last updated on 19/Sep/20

there′s no x∈Z

$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:{x}\in\mathbb{Z} \\ $$

Commented by Aziztisffola last updated on 19/Sep/20

yes sir no solution in Z.

$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{no}\:\mathrm{solution}\:\mathrm{in}\:\mathbb{Z}. \\ $$

Answered by floor(10²Eta[1]) last updated on 19/Sep/20

x^2 +2x≡1(mod3)  x≡0(mod3)⇒x^2 +2x≢1(mod3)  x≡1(mod3)⇒x^2 +2x≢1(mod3)  x≡2(mod3)⇒x^2 +2x≢1(mod3)  ⇒∄ x∈Z such that: x^2 +2x−1≡0(mod3)

$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\equiv\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{0}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{1}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod3}\right)\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{2x}≢\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\Rightarrow\nexists\:\mathrm{x}\in\mathbb{Z}\:\mathrm{such}\:\mathrm{that}:\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod3}\right) \\ $$

Commented by Aziztisffola last updated on 19/Sep/20

yes sir that′s it.   x^2 +2x−1≡0(mod3)  ⇔(x+1)^2 ≡2[3]  ⇔(x+1)^2 =2+3k  /k∈Z   and 2+3k≠ n^2   for n in Z.  then no solution.

$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{that}'\mathrm{s}\:\mathrm{it}. \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod3}\right) \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \equiv\mathrm{2}\left[\mathrm{3}\right] \\ $$$$\Leftrightarrow\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}+\mathrm{3k}\:\:/\mathrm{k}\in\mathbb{Z} \\ $$$$\:\mathrm{and}\:\mathrm{2}+\mathrm{3k}\neq\:\mathrm{n}^{\mathrm{2}} \:\:\mathrm{for}\:\mathrm{n}\:\mathrm{in}\:\mathbb{Z}. \\ $$$$\mathrm{then}\:\mathrm{no}\:\mathrm{solution}. \\ $$

Answered by 1549442205PVT last updated on 20/Sep/20

 x^2 +2x−1≡0(mod 3)(∗)  ∀x∈Z we always have x=3k±1or x=3k  i)If x=3k then x^2 +2x−1=−1(mod3)  ⇒(∗)has no roots(1)  ii)If x=3k+1 then (x+1)^2 −2=  (3k+2)^2 −2=9k^2 +12k+2)=2(mod3)(2)  iii)If x=3k−1 then (x+1)^2 −2=9k^2 −2  =−2(mod3)(3)  From (1)(2)(3) infer the equation(∗)  has no roots in Z

$$\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right)\left(\ast\right) \\ $$$$\forall\mathrm{x}\in\mathbb{Z}\:\mathrm{we}\:\mathrm{always}\:\mathrm{have}\:\mathrm{x}=\mathrm{3k}\pm\mathrm{1or}\:\mathrm{x}=\mathrm{3k} \\ $$$$\left.\mathrm{i}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}\:\mathrm{then}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}=−\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\Rightarrow\left(\ast\right)\mathrm{has}\:\mathrm{no}\:\mathrm{roots}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{ii}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}+\mathrm{1}\:\mathrm{then}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}= \\ $$$$\left.\left(\mathrm{3k}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{9k}^{\mathrm{2}} +\mathrm{12k}+\mathrm{2}\right)=\mathrm{2}\left(\mathrm{mod3}\right)\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{iii}\right)\mathrm{If}\:\mathrm{x}=\mathrm{3k}−\mathrm{1}\:\mathrm{then}\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}=\mathrm{9k}^{\mathrm{2}} −\mathrm{2} \\ $$$$=−\mathrm{2}\left(\mathrm{mod3}\right)\left(\mathrm{3}\right) \\ $$$$\mathrm{From}\:\left(\mathrm{1}\right)\left(\mathrm{2}\right)\left(\mathrm{3}\right)\:\mathrm{infer}\:\mathrm{the}\:\mathrm{equation}\left(\ast\right) \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{roots}\:\mathrm{in}\:\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com