Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 168267 by Florian last updated on 07/Apr/22

      Solve  this integral :         ∫(((√(x+1))−1)/( (√(x+1))+1))

$$\:\:\:\:\:\:{Solve}\:\:{this}\:{integral}\:: \\ $$$$\:\:\:\:\:\:\:\int\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}+\mathrm{1}} \\ $$$$ \\ $$

Answered by MJS_new last updated on 07/Apr/22

∫(((√(x+1))−1)/( (√(x+1))+1))dx=       [t=(√(x+1)) → dx=2tdt]  =2∫ ((t(t−1))/(t+1))dt=∫(2t−4+(4/(t+1)))dt=  =t^2 −4t+4ln (t+1) =  =x−4(√(x+1))+4ln (1+(√(x+1))) +C

$$\int\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}+\mathrm{1}}\:\rightarrow\:{dx}=\mathrm{2}{tdt}\right] \\ $$$$=\mathrm{2}\int\:\frac{{t}\left({t}−\mathrm{1}\right)}{{t}+\mathrm{1}}{dt}=\int\left(\mathrm{2}{t}−\mathrm{4}+\frac{\mathrm{4}}{{t}+\mathrm{1}}\right){dt}= \\ $$$$={t}^{\mathrm{2}} −\mathrm{4}{t}+\mathrm{4ln}\:\left({t}+\mathrm{1}\right)\:= \\ $$$$={x}−\mathrm{4}\sqrt{{x}+\mathrm{1}}+\mathrm{4ln}\:\left(\mathrm{1}+\sqrt{{x}+\mathrm{1}}\right)\:+{C} \\ $$

Commented by Florian last updated on 07/Apr/22

Good!

$${Good}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com