Question Number 168053 by lapache last updated on 01/Apr/22 | ||
![]() | ||
$${Solve}\:{the}\:{system}\: \\ $$$$\begin{cases}{{x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{2}{t}=\mathrm{2}}\\{\mathrm{2}{x}+\mathrm{5}{y}−\mathrm{8}{z}+\mathrm{6}{t}=\mathrm{5}}\\{\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}=\mathrm{4}}\end{cases} \\ $$ | ||
Answered by MJS_new last updated on 01/Apr/22 | ||
![]() | ||
$$\mathrm{3}\:\mathrm{equations};\:\mathrm{4}\:\mathrm{variables}\:\Rightarrow\:\mathrm{parametric}\:\mathrm{solution} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\\{{t}}\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{2}{p}}\\{\mathrm{1}−\mathrm{2}{p}}\\{\mathrm{0}}\\{{p}}\end{pmatrix}\:\:\mathrm{with}\:{p}\in\mathbb{R} \\ $$ | ||
Answered by FelipeLz last updated on 03/Apr/22 | ||
![]() | ||
$${x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{2}{t}+\mathrm{2}{x}+\mathrm{5}{y}−\mathrm{8}{z}+\mathrm{6}{t}−\left(\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}\right)\:=\:\mathrm{2}+\mathrm{5}−\mathrm{4} \\ $$$$\mathrm{3}{x}+\mathrm{7}{y}−\mathrm{5}{z}+\mathrm{8}{t}−\mathrm{3}{x}−\mathrm{4}{y}+\mathrm{5}{z}−\mathrm{2}{t}=\:\mathrm{3} \\ $$$$\mathrm{3}{y}+\mathrm{6}{t}\:=\:\mathrm{3} \\ $$$${y}\:=\:\mathrm{1}−\mathrm{2}{t} \\ $$$$\bullet \\ $$$$\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}\:=\:\mathrm{4} \\ $$$$\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}\:=\:\mathrm{2}\left({x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{2}{t}\right) \\ $$$$\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}\:=\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{6}{z}+\mathrm{4}{t} \\ $$$${x}−\mathrm{11}{z}−\mathrm{2}{t}\:=\:\mathrm{0} \\ $$$${z}\:=\:\mathrm{0}\:\rightarrow\:{x}−\mathrm{11}\left(\mathrm{0}\right)−\mathrm{2}{t}\:=\:\mathrm{0} \\ $$$${x}\:=\:\mathrm{2}{t} \\ $$$$\bullet \\ $$$$\mathrm{2}{x}+\mathrm{5}{y}−\mathrm{8}{z}+\mathrm{6}{t}−\mathrm{2}\left({x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{2}{t}\right)\:=\:\mathrm{5}−\mathrm{2}\left(\mathrm{2}\right) \\ $$$$\mathrm{2}{x}+\mathrm{5}{y}−\mathrm{8}{z}+\mathrm{6}{t}−\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{6}{z}−\mathrm{4}{t}\:=\:\mathrm{1} \\ $$$${y}−\mathrm{14}{z}+\mathrm{2}{t}\:=\:\mathrm{1} \\ $$$${y}\:=\:\mathrm{1}−\mathrm{2}{t}\:\rightarrow\:\mathrm{1}−\mathrm{2}{t}−\mathrm{14}{z}+\mathrm{2}{t}\:=\:\mathrm{1} \\ $$$$\mathrm{14}{z}\:=\:\mathrm{0}\:\Rightarrow\:{z}\:=\:\mathrm{0} \\ $$$$\bullet \\ $$$${x}\:=\:\alpha\:\rightarrow\:{y}\:=\:\mathrm{1}−\alpha;\:{z}\:=\:\mathrm{0};\:{t}\:=\:\frac{\alpha}{\mathrm{2}} \\ $$$${y}\:=\:\beta\:\rightarrow\:{x}\:=\:\mathrm{1}−\beta;\:{z}\:=\:\mathrm{0};\:{t}\:=\:\frac{\mathrm{1}−\beta}{\mathrm{2}} \\ $$$${t}\:=\:\gamma\:\rightarrow\:{x}\:=\:\mathrm{2}\gamma;\:{y}\:=\:\mathrm{1}−\mathrm{2}\gamma;\:{z}\:=\:\mathrm{0} \\ $$$$\boldsymbol{{S}}\:=\:\left\{\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\mid\:\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\:=\:\left(\boldsymbol{\alpha},\:\mathrm{1}−\boldsymbol{\alpha},\:\mathrm{0},\:\frac{\alpha}{\mathrm{2}}\right)\:\forall\boldsymbol{\alpha}\:\in\:\mathbb{R}\right\} \\ $$$$\boldsymbol{{S}}\:=\:\left\{\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\mid\:\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\:=\:\left(\mathrm{1}−\boldsymbol{\beta},\:\boldsymbol{\beta},\:\mathrm{0},\:\frac{\mathrm{1}−\boldsymbol{\beta}}{\mathrm{2}}\right)\:\forall\boldsymbol{\beta}\:\in\:\mathbb{R}\right\} \\ $$$$\boldsymbol{{S}}\:=\:\left\{\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\mid\:\left(\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{{z}},\:\boldsymbol{{t}}\right)\:=\:\left(\mathrm{2}\boldsymbol{\gamma},\:\mathrm{1}−\mathrm{2}\boldsymbol{\gamma},\:\mathrm{0},\:\boldsymbol{\gamma}\right)\:\forall\boldsymbol{\gamma}\:\in\:\mathbb{R}\right\} \\ $$ | ||