Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 135692 by liberty last updated on 15/Mar/21

  Solve the system of congruences  2x≡1(mod5)  3x≡2(mod7)  4x≡1(mod11)

$$ \\ $$Solve the system of congruences 2x≡1(mod5) 3x≡2(mod7) 4x≡1(mod11)

Answered by floor(10²Eta[1]) last updated on 15/Mar/21

2x≡1(mod 5)⇒x≡3(mod 5)⇒x=5a+3  3(5a+3)=15a+9≡a+2≡2(mod 7)  ⇒a≡0(mod 7)⇒a=7b⇒x=35b+3  4(35b+3)=140b+12≡8b+1≡1(mod 11)  8b≡0(mod 11)⇒b≡0(mod 11)⇒b=11c  ⇒x=385c+3, c∈Z

$$\mathrm{2x}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{x}\equiv\mathrm{3}\left(\mathrm{mod}\:\mathrm{5}\right)\Rightarrow\mathrm{x}=\mathrm{5a}+\mathrm{3} \\ $$$$\mathrm{3}\left(\mathrm{5a}+\mathrm{3}\right)=\mathrm{15a}+\mathrm{9}\equiv\mathrm{a}+\mathrm{2}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$$$\Rightarrow\mathrm{a}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{7}\right)\Rightarrow\mathrm{a}=\mathrm{7b}\Rightarrow\mathrm{x}=\mathrm{35b}+\mathrm{3} \\ $$$$\mathrm{4}\left(\mathrm{35b}+\mathrm{3}\right)=\mathrm{140b}+\mathrm{12}\equiv\mathrm{8b}+\mathrm{1}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{11}\right) \\ $$$$\mathrm{8b}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{11}\right)\Rightarrow\mathrm{b}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{11}\right)\Rightarrow\mathrm{b}=\mathrm{11c} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{385c}+\mathrm{3},\:\mathrm{c}\in\mathbb{Z} \\ $$

Commented by liberty last updated on 15/Mar/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com