Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110087 by 1549442205PVT last updated on 27/Aug/20

Solve the system following of equations   { ((x+y+z=2)),((2x+3y+z=1)),((x^2 +(y+2)^2 +(z−1)^2 =9)) :}

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{following}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{2}}\\{\mathrm{2x}+\mathrm{3y}+\mathrm{z}=\mathrm{1}}\\{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{9}}\end{cases} \\ $$

Commented by bemath last updated on 27/Aug/20

   [△((be)/(math))▽]   { ((x+y+z = 2)),((2x+3y+z = 1)),((x^2 +(y+2)^2 +(z−1)^2  = 9)) :}  ⇒z = z ⇒2−x−y=1−2x−3y  ⇒ x+2y=−1  ⇒ (−1−2y)^2 +(y+2)^2 +(2x+3y)^2 =9  (1+2y)^2 +(y+2)^2 +(−2−y)^2 =9  2(y+2)^2 +(1+2y)^2 =9  2(y^2 +4y+4)+4y^2 +4y+1=9  6y^2 +12y=0→6y(y+2)=0  y=0 or y=−2  case(1) y=0→ { ((x=−1)),((z=3)) :}  case(2) y=−2→ { ((x=3)),((z=1)) :}  solution set is {(−1,0,3),(3,−2,1)}

$$\:\:\:\left[\bigtriangleup\frac{{be}}{{math}}\bigtriangledown\right] \\ $$$$\begin{cases}{{x}+{y}+{z}\:=\:\mathrm{2}}\\{\mathrm{2}{x}+\mathrm{3}{y}+{z}\:=\:\mathrm{1}}\\{{x}^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\left({z}−\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{9}}\end{cases} \\ $$$$\Rightarrow{z}\:=\:{z}\:\Rightarrow\mathrm{2}−{x}−{y}=\mathrm{1}−\mathrm{2}{x}−\mathrm{3}{y} \\ $$$$\Rightarrow\:{x}+\mathrm{2}{y}=−\mathrm{1} \\ $$$$\Rightarrow\:\left(−\mathrm{1}−\mathrm{2}{y}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{2}{x}+\mathrm{3}{y}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$$\left(\mathrm{1}+\mathrm{2}{y}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\left(−\mathrm{2}−{y}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{2}\left({y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{1}+\mathrm{2}{y}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{2}\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{4}\right)+\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{1}=\mathrm{9} \\ $$$$\mathrm{6}{y}^{\mathrm{2}} +\mathrm{12}{y}=\mathrm{0}\rightarrow\mathrm{6}{y}\left({y}+\mathrm{2}\right)=\mathrm{0} \\ $$$${y}=\mathrm{0}\:{or}\:{y}=−\mathrm{2} \\ $$$${case}\left(\mathrm{1}\right)\:{y}=\mathrm{0}\rightarrow\begin{cases}{{x}=−\mathrm{1}}\\{{z}=\mathrm{3}}\end{cases} \\ $$$${case}\left(\mathrm{2}\right)\:{y}=−\mathrm{2}\rightarrow\begin{cases}{{x}=\mathrm{3}}\\{{z}=\mathrm{1}}\end{cases} \\ $$$${solution}\:{set}\:{is}\:\left\{\left(−\mathrm{1},\mathrm{0},\mathrm{3}\right),\left(\mathrm{3},−\mathrm{2},\mathrm{1}\right)\right\} \\ $$$$ \\ $$

Commented by john santu last updated on 27/Aug/20

nice

$${nice}\: \\ $$

Commented by 1549442205PVT last updated on 28/Aug/20

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com