Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 24864 by A1B1C1D1 last updated on 27/Nov/17

Solve the following trigonometric limit:    lim_(x → (π/4))  (5tg(x)) =

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{trigonometric}\:\mathrm{limit}: \\ $$$$ \\ $$$$\underset{\mathrm{x}\:\rightarrow\:\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\left(\mathrm{5tg}\left(\mathrm{x}\right)\right)\:=\: \\ $$

Answered by jota+ last updated on 28/Nov/17

 lim_(x→0) sinx=0   lim_(x→0)   cosx=1  ⇒lim_(x→0) tanx=0    h=x−(π/4)    5tan x=    =5tan ((π/4)+h)=5((1+tan h)/(1−tan h)).  lim_(x→π/4) 5tan x=5lim_(h→0) ((1+tan h)/(1−tan h))=5

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{sinx}=\mathrm{0}\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:{cosx}=\mathrm{1} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}tan}{x}=\mathrm{0}\: \\ $$$$\:{h}={x}−\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\mathrm{5tan}\:{x}= \\ $$$$\:\:=\mathrm{5tan}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{h}\right)=\mathrm{5}\frac{\mathrm{1}+\mathrm{tan}\:{h}}{\mathrm{1}−\mathrm{tan}\:{h}}. \\ $$$$\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}5tan}\:{x}=\mathrm{5}\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+\mathrm{tan}\:{h}}{\mathrm{1}−\mathrm{tan}\:{h}}=\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com