Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 197470 by Mastermind last updated on 18/Sep/23

Solve the following equation  x + 2y + 2z = 0  2x + y − 2z =0  3x + 4y − 6z =0  3x − 11y + 12z = 0

$${Solve}\:{the}\:{following}\:{equation} \\ $$$${x}\:+\:\mathrm{2}{y}\:+\:\mathrm{2}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{2}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:+\:\mathrm{4}{y}\:−\:\mathrm{6}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:−\:\mathrm{11}{y}\:+\:\mathrm{12}{z}\:=\:\mathrm{0} \\ $$

Answered by MathedUp last updated on 19/Sep/23

AB=O  A= ((1,2,(    2)),(2,1,(−2)),(3,4,(−6)) ) ,B= ((x),(y),(z) ) ,O= ((0),(0),(0) )  B=A^(−1) O  B=O  x,y,z=0

$${AB}={O}\:\:{A}=\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}&{\:\:\:\:\mathrm{2}}\\{\mathrm{2}}&{\mathrm{1}}&{−\mathrm{2}}\\{\mathrm{3}}&{\mathrm{4}}&{−\mathrm{6}}\end{pmatrix}\:,{B}=\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}\:,{O}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${B}={A}^{−\mathrm{1}} {O} \\ $$$${B}={O} \\ $$$${x},{y},{z}=\mathrm{0} \\ $$

Commented by Mastermind last updated on 25/Sep/23

Another illustration, Thank you MAN

$${Another}\:{illustration},\:{Thank}\:{you}\:{MAN} \\ $$

Answered by deleteduser1 last updated on 18/Sep/23

(i)+(ii)⇒3(x+y)=0⇒x=−y  (i)⇒y=−2z  (x,−x,(x/2))⇒(x,y,z)=(0,0,0)

$$\left({i}\right)+\left({ii}\right)\Rightarrow\mathrm{3}\left({x}+{y}\right)=\mathrm{0}\Rightarrow{x}=−{y} \\ $$$$\left({i}\right)\Rightarrow{y}=−\mathrm{2}{z} \\ $$$$\left({x},−{x},\frac{{x}}{\mathrm{2}}\right)\Rightarrow\left({x},{y},{z}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{0}\right) \\ $$

Commented by Mastermind last updated on 18/Sep/23

Thank you so much BOSS

$${Thank}\:{you}\:{so}\:{much}\:{BOSS} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com