Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 84232 by niroj last updated on 10/Mar/20

  Solve the following differential equation.    (d^2 y/dx^2 ) + (x/(1−x^2 )) (dy/dx)− (y/(1−x^2 ))= x(√(1−x^2 ))

$$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{following}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}−\:\frac{\boldsymbol{\mathrm{y}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }=\:\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$

Commented by mind is power last updated on 11/Mar/20

check sir please if is not   (d^2 y/dx^2 )−(x/(1−x^2 )).(dy/dx)−(y/(1+x^2 ))=x(√(1−x^2 ))   ?

$${check}\:{sir}\:{please}\:{if}\:{is}\:{not}\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }.\frac{{dy}}{{dx}}−\frac{{y}}{\mathrm{1}+{x}^{\mathrm{2}} }={x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\:\:? \\ $$

Commented by niroj last updated on 11/Mar/20

 try to complete. sir .

$$\:{try}\:{to}\:{complete}.\:{sir}\:. \\ $$

Answered by mind is power last updated on 11/Mar/20

if  (d^2 y/dx^2 )−(x/(1−x^2 )).(dy/dx)−(y/(1−x^2 ))=x(√(1−x^2 ))  x=sin(t)⇒y(x)=y(sin(t))=z(t)  (dy/dx)=(d/dt)y(sin(t)).(1/(dx/dt))=z′(t).(1/(cos(t)))  (d^2 y/dx^2 )=((z′′cos(t)+sin(t)z′)/(cos^2 (t))).(1/(cos(t)))  ⇒((z′′cos(t)+sin(t)z′)/(cos^3 (t)))−((sin(t))/(cos^2 (t))).((z′(t))/(cos(t)))−(z/(cos^2 (t)))=sin(t)cos(t)  ⇔z′′−z=sin(t)cos^3 (t)=(1/2)sin(2t)(((1+cos(2t))/2))  ⇒z′′−z=((sin(2t))/4)+((sin(4t))/8)  z(t)=se^t +be^(−t)   for homgenius equation  z_1 =((−sin(2t))/(20))−((sin(4t))/(136)) particular solution  z(t)=se^t +be^(−t) −((sin(2t))/(20))−((sin(4t))/(136))  t=arcsin(x)  z(t)=z(arcsin(x))=y(x)  y(x)=se^(arcsin(x)) +be^(−arcsin(x)) −((x(√(1−x^2 )))/(10))−((x(√(1−x^2 )).(1−2x^2 ))/(34))

$${if} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }.\frac{{dy}}{{dx}}−\frac{{y}}{\mathrm{1}−{x}^{\mathrm{2}} }={x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${x}={sin}\left({t}\right)\Rightarrow{y}\left({x}\right)={y}\left({sin}\left({t}\right)\right)={z}\left({t}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}}{{dt}}{y}\left({sin}\left({t}\right)\right).\frac{\mathrm{1}}{\frac{{dx}}{{dt}}}={z}'\left({t}\right).\frac{\mathrm{1}}{{cos}\left({t}\right)} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{{z}''{cos}\left({t}\right)+{sin}\left({t}\right){z}'}{{cos}^{\mathrm{2}} \left({t}\right)}.\frac{\mathrm{1}}{{cos}\left({t}\right)} \\ $$$$\Rightarrow\frac{{z}''{cos}\left({t}\right)+{sin}\left({t}\right){z}'}{{cos}^{\mathrm{3}} \left({t}\right)}−\frac{{sin}\left({t}\right)}{{cos}^{\mathrm{2}} \left({t}\right)}.\frac{{z}'\left({t}\right)}{{cos}\left({t}\right)}−\frac{{z}}{{cos}^{\mathrm{2}} \left({t}\right)}={sin}\left({t}\right){cos}\left({t}\right) \\ $$$$\Leftrightarrow{z}''−{z}={sin}\left({t}\right){cos}^{\mathrm{3}} \left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{t}\right)\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right) \\ $$$$\Rightarrow{z}''−{z}=\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{4}}+\frac{{sin}\left(\mathrm{4}{t}\right)}{\mathrm{8}} \\ $$$${z}\left({t}\right)={se}^{{t}} +{be}^{−{t}} \:\:{for}\:{homgenius}\:{equation} \\ $$$${z}_{\mathrm{1}} =\frac{−{sin}\left(\mathrm{2}{t}\right)}{\mathrm{20}}−\frac{{sin}\left(\mathrm{4}{t}\right)}{\mathrm{136}}\:{particular}\:{solution} \\ $$$${z}\left({t}\right)={se}^{{t}} +{be}^{−{t}} −\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{20}}−\frac{{sin}\left(\mathrm{4}{t}\right)}{\mathrm{136}} \\ $$$${t}={arcsin}\left({x}\right) \\ $$$${z}\left({t}\right)={z}\left({arcsin}\left({x}\right)\right)={y}\left({x}\right) \\ $$$${y}\left({x}\right)={se}^{{arcsin}\left({x}\right)} +{be}^{−{arcsin}\left({x}\right)} −\frac{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{10}}−\frac{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }.\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)}{\mathrm{34}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com