Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 154497 by mathdanisur last updated on 18/Sep/21

Solve the equations:  a)   2 (√(2x^3  - x)) = 3x^2  - 3x + 2  b)   (√((x^4  + 16)/2)) + (√(2(x^2  + 4))) = 3x + 2

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\:\:\sqrt{\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{16}}{\mathrm{2}}}\:+\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right)}\:=\:\mathrm{3x}\:+\:\mathrm{2} \\ $$

Answered by ARUNG_Brandon_MBU last updated on 18/Sep/21

a. x=1 is a solution

$$\mathrm{a}.\:{x}=\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$

Answered by Fridunatjan08 last updated on 19/Sep/21

  Solve the equations:  a)   2 (√(2x^3  - x)) = 3x^2  - 3x + 2    (2(√(2x^3 −x)))^2 =(3x^2 −3x+2)^2   8x^3 −4x = 9x^4 −18x^3 +21x^2 −12x+4  9x^4 −26x^3 +21x^2 −8x+4=0  p(x)=9x^4 −26x^3 +21x^2 −8x+4  p(1)=0  (x−1)(9x^3 −17x^2 +4x−4)=0  x−1=0∣9x^3 −17x^2 +4x−4=0  x_1 =1.

$$ \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\:\:\left(\mathrm{2}\sqrt{\mathrm{2}{x}^{\mathrm{3}} −{x}}\right)^{\mathrm{2}} =\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\mathrm{8}{x}^{\mathrm{3}} −\mathrm{4}{x}\:=\:\mathrm{9}{x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{4} \\ $$$$\mathrm{9}{x}^{\mathrm{4}} −\mathrm{26}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{4}=\mathrm{0} \\ $$$${p}\left({x}\right)=\mathrm{9}{x}^{\mathrm{4}} −\mathrm{26}{x}^{\mathrm{3}} +\mathrm{21}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{4} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left(\mathrm{9}{x}^{\mathrm{3}} −\mathrm{17}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}\right)=\mathrm{0} \\ $$$${x}−\mathrm{1}=\mathrm{0}\mid\mathrm{9}{x}^{\mathrm{3}} −\mathrm{17}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{1}. \\ $$

Commented by mathdanisur last updated on 19/Sep/21

Very nice Ser thanks

$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{Ser}\:\mathrm{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com