Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 26649 by Mr eaay last updated on 27/Dec/17

Solve the equation:x+y=5−−−i                                          x^x + y^y =31−−−ii  No trial and error

$${Solve}\:{the}\:{equation}:{x}+{y}=\mathrm{5}−−−{i} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{x}} +\:{y}^{{y}} =\mathrm{31}−−−{ii} \\ $$$${No}\:{trial}\:{and}\:{error} \\ $$$$ \\ $$

Commented by mrW1 last updated on 27/Dec/17

If you want to get an analytic formula,  I think there is no chance.  For concrete values you can find  the solution via graphic method.

$${If}\:{you}\:{want}\:{to}\:{get}\:{an}\:{analytic}\:{formula}, \\ $$$${I}\:{think}\:{there}\:{is}\:{no}\:{chance}. \\ $$$${For}\:{concrete}\:{values}\:{you}\:{can}\:{find} \\ $$$${the}\:{solution}\:{via}\:{graphic}\:{method}. \\ $$

Answered by Amstrongmazoka last updated on 28/Dec/17

from equ(i), y=(5−x)  substituting for y in equ(ii), gives,  x^x +(5−x)^((5−x)) =31  ⇒x^x +(5−x)^((5−x)) −31=0  Now, let f(x)=x^x +(5−x)^((5−x)) −31  ⇒((df(x))/dx)=f′(x)=x^x (1+lnx)−(5−x)^((5−x)) [1+ln(5−x)]  Now, by the Newton′s iterative formula,  x_2 =x_1 −((f(x_1 ))/(f′(x_1 ))), now for this particular f(x),  x_2 =x_1 −((x_1 ^x_1  +(5−x_1 )^((5−x_1 )) −31)/(x_1 ^x_1  (1+lnx_1 )−(5−x_1 )^((5−x_1 )) [1+ln(5−x_1 )]))  Now, choosing any arbitrary value of x_1  that makes lnx and ln(5−x) defined,  then we can only choose from 0<x<5  Now, taking x_1 =1  for instance, gives    x_2 =1.3706,    x_3 =1.6905,     x_4 =1.9049,    x_5 =1.9888  x_6 =1.9998,     x_7 =2.0000,     x_8 =2.0000  Thus    lim_(x→2) x_n  =2,  ∴ x=2 is a solution.  Similarly, choosing another arbitrary value of say x_1 =4, gives  x_2 =3.6294,    x_3 =3.3095,    x_4 =3.0952,  x_5 =3.0112,     x_6 =3.0002,   x_7 =3.0000,    x_8 =3.0000  Again,  lim_(x→3) x_n  =3,   ∴ x=3 is also a solution to the equation.  Any other arbitrarily chosen value of x_(1 ) only points  to either 2 or 3. Thus these are the only solutions.  ∴ either x=2 or x=3.  But x+y=5,  −⇒y=5−x  ∴ when x=2,  y=5−2=3,  and when x=3,  y=5−3=2  Finally, for the system of equations,  x=2 and y=3,   or    x=3 and y=2.

$${from}\:{equ}\left({i}\right),\:{y}=\left(\mathrm{5}−{x}\right) \\ $$$${substituting}\:{for}\:{y}\:{in}\:{equ}\left({ii}\right),\:{gives}, \\ $$$${x}^{{x}} +\left(\mathrm{5}−{x}\right)^{\left(\mathrm{5}−{x}\right)} =\mathrm{31} \\ $$$$\Rightarrow{x}^{{x}} +\left(\mathrm{5}−{x}\right)^{\left(\mathrm{5}−{x}\right)} −\mathrm{31}=\mathrm{0} \\ $$$${Now},\:{let}\:{f}\left({x}\right)={x}^{{x}} +\left(\mathrm{5}−{x}\right)^{\left(\mathrm{5}−{x}\right)} −\mathrm{31} \\ $$$$\Rightarrow\frac{{df}\left({x}\right)}{{dx}}={f}'\left({x}\right)={x}^{{x}} \left(\mathrm{1}+\mathrm{ln}{x}\right)−\left(\mathrm{5}−{x}\right)^{\left(\mathrm{5}−{x}\right)} \left[\mathrm{1}+\mathrm{ln}\left(\mathrm{5}−{x}\right)\right] \\ $$$${Now},\:{by}\:{the}\:{Newton}'{s}\:{iterative}\:{formula}, \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} −\frac{{f}\left({x}_{\mathrm{1}} \right)}{{f}'\left({x}_{\mathrm{1}} \right)},\:{now}\:{for}\:{this}\:{particular}\:{f}\left({x}\right), \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} −\frac{{x}_{\mathrm{1}} ^{{x}_{\mathrm{1}} } +\left(\mathrm{5}−{x}_{\mathrm{1}} \right)^{\left(\mathrm{5}−{x}_{\mathrm{1}} \right)} −\mathrm{31}}{{x}_{\mathrm{1}} ^{{x}_{\mathrm{1}} } \left(\mathrm{1}+\mathrm{ln}{x}_{\mathrm{1}} \right)−\left(\mathrm{5}−{x}_{\mathrm{1}} \right)^{\left(\mathrm{5}−{x}_{\mathrm{1}} \right)} \left[\mathrm{1}+\mathrm{ln}\left(\mathrm{5}−{x}_{\mathrm{1}} \right)\right]} \\ $$$${Now},\:{choosing}\:{any}\:{arbitrary}\:{value}\:{of}\:{x}_{\mathrm{1}} \:{that}\:{makes}\:{lnx}\:{and}\:{ln}\left(\mathrm{5}−{x}\right)\:{defined}, \\ $$$${then}\:{we}\:{can}\:{only}\:{choose}\:{from}\:\mathrm{0}<{x}<\mathrm{5} \\ $$$${Now},\:{taking}\:{x}_{\mathrm{1}} =\mathrm{1}\:\:{for}\:{instance},\:{gives}\:\: \\ $$$${x}_{\mathrm{2}} =\mathrm{1}.\mathrm{3706},\:\:\:\:{x}_{\mathrm{3}} =\mathrm{1}.\mathrm{6905},\:\:\:\:\:{x}_{\mathrm{4}} =\mathrm{1}.\mathrm{9049},\:\:\:\:{x}_{\mathrm{5}} =\mathrm{1}.\mathrm{9888} \\ $$$${x}_{\mathrm{6}} =\mathrm{1}.\mathrm{9998},\:\:\:\:\:{x}_{\mathrm{7}} =\mathrm{2}.\mathrm{0000},\:\:\:\:\:{x}_{\mathrm{8}} =\mathrm{2}.\mathrm{0000} \\ $$$${Thus}\:\:\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}{x}_{{n}} \:=\mathrm{2},\:\:\therefore\:{x}=\mathrm{2}\:{is}\:{a}\:{solution}. \\ $$$${Similarly},\:{choosing}\:{another}\:{arbitrary}\:{value}\:{of}\:{say}\:{x}_{\mathrm{1}} =\mathrm{4},\:{gives} \\ $$$${x}_{\mathrm{2}} =\mathrm{3}.\mathrm{6294},\:\:\:\:{x}_{\mathrm{3}} =\mathrm{3}.\mathrm{3095},\:\:\:\:{x}_{\mathrm{4}} =\mathrm{3}.\mathrm{0952}, \\ $$$${x}_{\mathrm{5}} =\mathrm{3}.\mathrm{0112},\:\:\:\:\:{x}_{\mathrm{6}} =\mathrm{3}.\mathrm{0002},\:\:\:{x}_{\mathrm{7}} =\mathrm{3}.\mathrm{0000},\:\:\:\:{x}_{\mathrm{8}} =\mathrm{3}.\mathrm{0000} \\ $$$${Again},\:\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}{x}_{{n}} \:=\mathrm{3},\:\:\:\therefore\:{x}=\mathrm{3}\:{is}\:{also}\:{a}\:{solution}\:{to}\:{the}\:{equation}. \\ $$$${Any}\:{other}\:{arbitrarily}\:{chosen}\:{value}\:{of}\:{x}_{\mathrm{1}\:} {only}\:{points} \\ $$$${to}\:{either}\:\mathrm{2}\:{or}\:\mathrm{3}.\:{Thus}\:{these}\:{are}\:{the}\:{only}\:{solutions}. \\ $$$$\therefore\:{either}\:{x}=\mathrm{2}\:{or}\:{x}=\mathrm{3}. \\ $$$${But}\:{x}+{y}=\mathrm{5},\:\:−\Rightarrow{y}=\mathrm{5}−{x} \\ $$$$\therefore\:{when}\:{x}=\mathrm{2},\:\:{y}=\mathrm{5}−\mathrm{2}=\mathrm{3},\:\:{and}\:{when}\:{x}=\mathrm{3},\:\:{y}=\mathrm{5}−\mathrm{3}=\mathrm{2} \\ $$$${Finally},\:{for}\:{the}\:{system}\:{of}\:{equations}, \\ $$$${x}=\mathrm{2}\:{and}\:{y}=\mathrm{3},\:\:\:{or}\:\:\:\:{x}=\mathrm{3}\:{and}\:{y}=\mathrm{2}. \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com