Question Number 205471 by Fridunatjan08 last updated on 21/Mar/24 | ||
$${Solve}\:{the}\:{equation}:\:\frac{{x}}{\mathrm{21}}+\frac{{x}}{\mathrm{77}}+\frac{{x}}{\mathrm{165}}+\frac{{x}}{\mathrm{285}}=\mathrm{200} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 23/Mar/24 | ||
$$\frac{{x}}{\mathrm{21}}+\frac{{x}}{\mathrm{77}}+\frac{{x}}{\mathrm{165}}+\frac{{x}}{\mathrm{285}}=\mathrm{200} \\ $$$${x}\left(\frac{\mathrm{1}}{\mathrm{21}}+\frac{\mathrm{1}}{\mathrm{77}}+\frac{\mathrm{1}}{\mathrm{165}}+\frac{\mathrm{1}}{\mathrm{285}}\right)=\mathrm{200} \\ $$$${x}\left(\:\frac{\mathrm{1}}{\mathrm{7}}\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{11}}\right)+\frac{\mathrm{1}}{\mathrm{15}}\left(\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{19}}\right)\right)=\mathrm{200} \\ $$$${x}\left(\:\frac{\mathrm{1}}{\cancel{\underset{\mathrm{1}} {\:\mathrm{7}}}}\left(\frac{\cancel{\overset{\mathrm{2}} {\mathrm{14}}}}{\mathrm{3}×\mathrm{11}}\right)+\frac{\mathrm{1}}{\cancel{\underset{\mathrm{1}} {\mathrm{15}}}}\left(\frac{\cancel{\overset{\mathrm{2}} {\mathrm{30}}}}{\mathrm{11}×\mathrm{19}}\right)\right)=\mathrm{200} \\ $$$${x}\left(\:\frac{\mathrm{1}}{\mathrm{33}}+\frac{\mathrm{1}}{\mathrm{209}}\right)=\mathrm{100} \\ $$$${x}\left(\frac{\mathrm{1}}{\mathrm{11}}\left(\:\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{19}}\right)\right)=\mathrm{100} \\ $$$${x}\left(\frac{\mathrm{1}}{\cancel{\underset{\mathrm{1}} {\mathrm{11}}}}\left(\:\frac{\cancel{\overset{\mathrm{2}} {\mathrm{22}}}}{\mathrm{3}×\mathrm{19}}\right)\right)=\mathrm{100} \\ $$$${x}\left(\frac{\mathrm{1}}{\mathrm{57}}\right)=\mathrm{50} \\ $$$${x}=\mathrm{50}×\mathrm{57}=\mathrm{2850} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 22/Mar/24 | ||
$${Similar}\:{method}\left({grouping}\:{in}\:{another}\:{way}\right) \\ $$$$\frac{{x}}{\mathrm{21}}+\frac{{x}}{\mathrm{285}}+\frac{{x}}{\mathrm{77}}+\frac{{x}}{\mathrm{165}}=\mathrm{200} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{x}}{\mathrm{7}}+\frac{{x}}{\mathrm{95}}\right)+\frac{\mathrm{1}}{\mathrm{11}}\left(\frac{{x}}{\mathrm{7}}+\frac{{x}}{\mathrm{15}}\right)=\mathrm{200} \\ $$$$\frac{\mathrm{1}}{\cancel{\mathrm{3}}}\centerdot\frac{\cancel{\overset{\mathrm{34}} {\mathrm{102}}}{x}}{\mathrm{665}}+\frac{\mathrm{1}}{\cancel{\mathrm{11}}}\centerdot\frac{\cancel{\overset{\mathrm{2}} {\mathrm{22}}}{x}}{\mathrm{105}}=\mathrm{200} \\ $$$$\:\:\:\:\:\frac{\mathrm{17}{x}}{\mathrm{665}}+\frac{{x}}{\mathrm{105}}=\mathrm{100} \\ $$$$\:\:\:\frac{\mathrm{1}}{\mathrm{35}}\left(\frac{\mathrm{17}{x}}{\mathrm{19}}+\frac{{x}}{\mathrm{3}}\right)=\mathrm{100} \\ $$$$\:\:\:\frac{\mathrm{1}}{\cancel{\mathrm{35}}}\left(\frac{\cancel{\overset{\mathrm{2}} {\mathrm{70}}}{x}}{\mathrm{57}}\right)=\mathrm{100} \\ $$$$\:\:\:\:\:\:\:\:\frac{{x}}{\mathrm{57}}=\mathrm{50}\Rightarrow{x}=\mathrm{2850} \\ $$ | ||