Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145109 by mathdanisur last updated on 02/Jul/21

Solve the equation:  cos(6x)−cos(4x)=4y^2 +4y+3

$${Solve}\:{the}\:{equation}: \\ $$$${cos}\left(\mathrm{6}{x}\right)−{cos}\left(\mathrm{4}{x}\right)=\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{3} \\ $$

Answered by mitica last updated on 02/Jul/21

cos6x−cos4x≤1−(−1)=2⇒  4y^2 +4y+3≤2⇒(2y+1)^2 ≤0  ⇒y=((−1)/2)  cos4x=−1⇒cos2x=((1+cos4x)/2)=0  cos6x=1⇒4cos^3 2x−3cos2x=1⇒0=1⇒x∈φ

$${cos}\mathrm{6}{x}−{cos}\mathrm{4}{x}\leqslant\mathrm{1}−\left(−\mathrm{1}\right)=\mathrm{2}\Rightarrow \\ $$$$\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{3}\leqslant\mathrm{2}\Rightarrow\left(\mathrm{2}{y}+\mathrm{1}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$$\Rightarrow{y}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$${cos}\mathrm{4}{x}=−\mathrm{1}\Rightarrow{cos}\mathrm{2}{x}=\frac{\mathrm{1}+{cos}\mathrm{4}{x}}{\mathrm{2}}=\mathrm{0} \\ $$$${cos}\mathrm{6}{x}=\mathrm{1}\Rightarrow\mathrm{4}{cos}^{\mathrm{3}} \mathrm{2}{x}−\mathrm{3}{cos}\mathrm{2}{x}=\mathrm{1}\Rightarrow\mathrm{0}=\mathrm{1}\Rightarrow{x}\in\phi \\ $$

Commented by mathdanisur last updated on 02/Jul/21

a lot cool Ser, thanks

$${a}\:{lot}\:{cool}\:{Ser},\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com