Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 48361 by peter frank last updated on 22/Nov/18

Solve the equation  cos^(−1) x+cos^(−1) ((x/2)+((√(3−3x^2 ))/2))=(π/3)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}^{−\mathrm{1}} \mathrm{x}+\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}−\mathrm{3x}^{\mathrm{2}} }}{\mathrm{2}}\right)=\frac{\pi}{\mathrm{3}} \\ $$

Commented by MJS last updated on 22/Nov/18

it′s true for x≥(1/2)

$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{for}\:{x}\geqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by behi83417@gmail.com last updated on 22/Nov/18

this is not an equation.  let:a=cos^(−1) x,b=cos^(−1) ((x/2)+((√(3−3x^2 ))/2))  cosb=(x/2)+((√(3−3x^2 ))/2)=(1/2).x+((√3)/2).(√(1−x^2 ))=  =cos(π/3)cosa+sin(π/3).sina=cos((π/3)−a)  ⇒b=(π/3)−a⇒a+b=(π/3),for:x∈[−1,1].

$${this}\:{is}\:{not}\:{an}\:{equation}. \\ $$$${let}:{a}={cos}^{−\mathrm{1}} {x},{b}={cos}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}}\right) \\ $$$${cosb}=\frac{{x}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}−\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}.{x}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}.\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }= \\ $$$$={cos}\frac{\pi}{\mathrm{3}}{cosa}+{sin}\frac{\pi}{\mathrm{3}}.{sina}={cos}\left(\frac{\pi}{\mathrm{3}}−{a}\right) \\ $$$$\Rightarrow{b}=\frac{\pi}{\mathrm{3}}−{a}\Rightarrow{a}+{b}=\frac{\pi}{\mathrm{3}},{for}:{x}\in\left[−\mathrm{1},\mathrm{1}\right]. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com