Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51680 by Tawa1 last updated on 29/Dec/18

Solve the equation:        (1)     z^3  + 1 − 10i  =  0   (2)     z^4  − i + 2  =  0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}:\:\:\:\:\: \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\:\:\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{1}\:−\:\mathrm{10i}\:\:=\:\:\mathrm{0} \\ $$$$\:\left(\mathrm{2}\right)\:\:\:\:\:\mathrm{z}^{\mathrm{4}} \:−\:\mathrm{i}\:+\:\mathrm{2}\:\:=\:\:\mathrm{0} \\ $$

Commented by maxmathsup by imad last updated on 29/Dec/18

2)  z^4 −i+2=0 ⇔z^4 =−2+i =(√5)(−(2/(√5)) +(i/(√5))) =r(cosθ +i sinθ) ⇒  r=(√5)and cosθ =−(2/(√5)) and sinθ =(1/(√5)) ⇒tanθ =−(1/2) ⇒θ =−arctan((1/2)) ⇒  −2+i =r e^(−i arctan((1/2)))    let z =ρ e^(iα)    so z^4 =−2+i ⇒ρ^4 =r  and 4α=−arctan((1/2))+2kπ ⇒  ρ=^4 (√r)  and  α_k =−(1/4)arctan((1/2)) +((kπ)/2)  with k∈[[0,3]]  so the roots of this  equation are Z_k =^8 (√5) e^(i(−(1/4)arctan((1/2))+((kπ)/2)))   and k∈[[0,3]].

$$\left.\mathrm{2}\right)\:\:{z}^{\mathrm{4}} −{i}+\mathrm{2}=\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{4}} =−\mathrm{2}+{i}\:=\sqrt{\mathrm{5}}\left(−\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:+\frac{{i}}{\sqrt{\mathrm{5}}}\right)\:={r}\left({cos}\theta\:+{i}\:{sin}\theta\right)\:\Rightarrow \\ $$$${r}=\sqrt{\mathrm{5}}{and}\:{cos}\theta\:=−\frac{\mathrm{2}}{\sqrt{\mathrm{5}}}\:{and}\:{sin}\theta\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\Rightarrow{tan}\theta\:=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\theta\:=−{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Rightarrow \\ $$$$−\mathrm{2}+{i}\:={r}\:{e}^{−{i}\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\:{let}\:{z}\:=\rho\:{e}^{{i}\alpha} \:\:\:{so}\:{z}^{\mathrm{4}} =−\mathrm{2}+{i}\:\Rightarrow\rho^{\mathrm{4}} ={r}\:\:{and}\:\mathrm{4}\alpha=−{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{2}{k}\pi\:\Rightarrow \\ $$$$\rho=^{\mathrm{4}} \sqrt{{r}}\:\:{and}\:\:\alpha_{{k}} =−\frac{\mathrm{1}}{\mathrm{4}}{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\frac{{k}\pi}{\mathrm{2}}\:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]\:\:{so}\:{the}\:{roots}\:{of}\:{this} \\ $$$${equation}\:{are}\:{Z}_{{k}} =^{\mathrm{8}} \sqrt{\mathrm{5}}\:{e}^{{i}\left(−\frac{\mathrm{1}}{\mathrm{4}}{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{{k}\pi}{\mathrm{2}}\right)} \:\:{and}\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right]. \\ $$

Commented by maxmathsup by imad last updated on 29/Dec/18

for question 1) we follow the same method.

$$\left.{for}\:{question}\:\mathrm{1}\right)\:{we}\:{follow}\:{the}\:{same}\:{method}. \\ $$

Answered by peter frank last updated on 29/Dec/18

1)z^3 =−1+10i  r=(√(101))  θ=tan^(−1) −((10)/1)=−84.2894^°   ......    2)z^4 =−2+i  r=(√5)  θ=tan^(−1) ((−2)/1)=−63.4349  .....please wait...

$$\left.\mathrm{1}\right){z}^{\mathrm{3}} =−\mathrm{1}+\mathrm{10}{i} \\ $$$${r}=\sqrt{\mathrm{101}} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} −\frac{\mathrm{10}}{\mathrm{1}}=−\mathrm{84}.\mathrm{2894}^{°} \\ $$$$...... \\ $$$$ \\ $$$$\left.\mathrm{2}\right){z}^{\mathrm{4}} =−\mathrm{2}+{i} \\ $$$${r}=\sqrt{\mathrm{5}} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{−\mathrm{2}}{\mathrm{1}}=−\mathrm{63}.\mathrm{4349} \\ $$$$.....{please}\:{wait}... \\ $$

Commented by Tawa1 last updated on 29/Dec/18

Please is this the solution ???

$$\mathrm{Please}\:\mathrm{is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{solution}\:??? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com