Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 183209 by Mastermind last updated on 23/Dec/22

Solve the Differential equation below  (d^3 y/dx^3 )+8(d^2 y/dx^2 )+12(dy/dx)=0      M.m

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Differential}\:\mathrm{equation}\:\mathrm{below} \\ $$$$\frac{\mathrm{d}^{\mathrm{3}} \mathrm{y}}{\mathrm{dx}^{\mathrm{3}} }+\mathrm{8}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{12}\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by aleks041103 last updated on 24/Dec/22

y^((3)) +8y^((2)) +12y^((1)) =0  z=y^((1)) =e^(rx)   r^2 +8r+12=0  (r+2)(r+6)=0  ⇒z=A_1 e^(−2x) +B_1 e^(−6x) =y′  ⇒y=(A_1 /(−2))e^(−2x) +(B_1 /(−6))e^(−6x) +C  ⇒y=Ae^(−2x) +Be^(−6x) +C

$${y}^{\left(\mathrm{3}\right)} +\mathrm{8}{y}^{\left(\mathrm{2}\right)} +\mathrm{12}{y}^{\left(\mathrm{1}\right)} =\mathrm{0} \\ $$$${z}={y}^{\left(\mathrm{1}\right)} ={e}^{{rx}} \\ $$$${r}^{\mathrm{2}} +\mathrm{8}{r}+\mathrm{12}=\mathrm{0} \\ $$$$\left({r}+\mathrm{2}\right)\left({r}+\mathrm{6}\right)=\mathrm{0} \\ $$$$\Rightarrow{z}={A}_{\mathrm{1}} {e}^{−\mathrm{2}{x}} +{B}_{\mathrm{1}} {e}^{−\mathrm{6}{x}} ={y}' \\ $$$$\Rightarrow{y}=\frac{{A}_{\mathrm{1}} }{−\mathrm{2}}{e}^{−\mathrm{2}{x}} +\frac{{B}_{\mathrm{1}} }{−\mathrm{6}}{e}^{−\mathrm{6}{x}} +{C} \\ $$$$\Rightarrow{y}={Ae}^{−\mathrm{2}{x}} +{Be}^{−\mathrm{6}{x}} +{C} \\ $$

Commented by Mastermind last updated on 23/Dec/22

There was an error in the question,  i′m sorry  i have corrected it tho.

$$\mathrm{There}\:\mathrm{was}\:\mathrm{an}\:\mathrm{error}\:\mathrm{in}\:\mathrm{the}\:\mathrm{question}, \\ $$$$\mathrm{i}'\mathrm{m}\:\mathrm{sorry} \\ $$$$\mathrm{i}\:\mathrm{have}\:\mathrm{corrected}\:\mathrm{it}\:\mathrm{tho}. \\ $$

Commented by aleks041103 last updated on 24/Dec/22

I ′ve corrected my answer also

$${I}\:'{ve}\:{corrected}\:{my}\:{answer}\:{also} \\ $$

Commented by Mastermind last updated on 27/Dec/22

How did you get your last answer?

$$\mathrm{How}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{your}\:\mathrm{last}\:\mathrm{answer}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com