Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 5386 by sanusihammed last updated on 12/May/16

Solve simultaneously    x^x  +  y^(y )  =  31  x  +  y  =  5    Please i did workings ...    Thanks for your help.

$${Solve}\:{simultaneously} \\ $$$$ \\ $$$${x}^{{x}} \:+\:\:{y}^{{y}\:} \:=\:\:\mathrm{31} \\ $$$${x}\:\:+\:\:{y}\:\:=\:\:\mathrm{5} \\ $$$$ \\ $$$${Please}\:{i}\:{did}\:{workings}\:... \\ $$$$ \\ $$$${Thanks}\:{for}\:{your}\:{help}. \\ $$

Commented by Rasheed Soomro last updated on 12/May/16

Trying to find out the solution in  natural numbers:  Possible solutions for x+y=5  are (1,4),(2,3),(3,2),(4,1)  Substituting one by one in x^x +y^y =31  we will find that only (2,3) and (3,2)   satisfy the equation:  2^2 +3^3 =4+27=31 and  3^3 +2^2 =27+4=31  Hence (2,3) and (3,2) are solutions.

$$\mathrm{Trying}\:\mathrm{to}\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{in} \\ $$$$\mathrm{natural}\:\mathrm{numbers}: \\ $$$$\mathrm{Possible}\:\mathrm{solutions}\:\mathrm{for}\:\mathrm{x}+\mathrm{y}=\mathrm{5} \\ $$$$\mathrm{are}\:\left(\mathrm{1},\mathrm{4}\right),\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right),\left(\mathrm{4},\mathrm{1}\right) \\ $$$$\mathrm{Substituting}\:\mathrm{one}\:\mathrm{by}\:\mathrm{one}\:\mathrm{in}\:\mathrm{x}^{\mathrm{x}} +\mathrm{y}^{\mathrm{y}} =\mathrm{31} \\ $$$$\mathrm{we}\:\mathrm{will}\:\mathrm{find}\:\mathrm{that}\:\mathrm{only}\:\left(\mathrm{2},\mathrm{3}\right)\:\mathrm{and}\:\left(\mathrm{3},\mathrm{2}\right)\: \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} =\mathrm{4}+\mathrm{27}=\mathrm{31}\:\mathrm{and} \\ $$$$\mathrm{3}^{\mathrm{3}} +\mathrm{2}^{\mathrm{2}} =\mathrm{27}+\mathrm{4}=\mathrm{31} \\ $$$$\mathrm{Hence}\:\left(\mathrm{2},\mathrm{3}\right)\:\mathrm{and}\:\left(\mathrm{3},\mathrm{2}\right)\:\mathrm{are}\:\mathrm{solutions}. \\ $$

Commented by sanusihammed last updated on 12/May/16

Please no algebral solution ?

$${Please}\:{no}\:{algebral}\:{solution}\:? \\ $$

Commented by Rasheed Soomro last updated on 12/May/16

x+y=5⇒x=5−y⇒x^x =(5−y)^(5−y)   ⇒x^x +y^y =(5−y)^(5−y) +y^y =31  I think only numerical methods!

$${x}+{y}=\mathrm{5}\Rightarrow{x}=\mathrm{5}−{y}\Rightarrow{x}^{{x}} =\left(\mathrm{5}−{y}\right)^{\mathrm{5}−{y}} \\ $$$$\Rightarrow{x}^{{x}} +{y}^{{y}} =\left(\mathrm{5}−{y}\right)^{\mathrm{5}−{y}} +{y}^{{y}} =\mathrm{31} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{only}\:\mathrm{numerical}\:\mathrm{methods}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com