Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6824 by Tawakalitu. last updated on 30/Jul/16

Solve simultaneously  (1/u) + (1/v) = (1/3)     .......... equation (i)  (u^2 /v) + (v^2 /u) = 12      ........ equation (ii)

$${Solve}\:{simultaneously} \\ $$$$\frac{\mathrm{1}}{{u}}\:+\:\frac{\mathrm{1}}{{v}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:\:..........\:{equation}\:\left({i}\right) \\ $$$$\frac{{u}^{\mathrm{2}} }{{v}}\:+\:\frac{{v}^{\mathrm{2}} }{{u}}\:=\:\mathrm{12}\:\:\:\:\:\:........\:{equation}\:\left({ii}\right) \\ $$

Commented by sou1618 last updated on 30/Jul/16

  (i)((v+u)/(uv))=(1/3)⇔  3(u+v)=uv    (ii)((u^3 +v^3 )/(uv))=12⇔(u+v)(u^2 −uv+v^2 )=12uv  ⇔(u+v){(u+v)^2 −3uv}=12uv    set  { ((u+v=x)),((uv=y)) :}  (i),(ii)⇒ { (((1). 3x=y)),(((2). x^3 −3xy=12y)) :}  (2)⇒x^3 −3x(3x)=12(3x)   ((1))        x^3 −9x^2 −36x=0       x(x−12)(x+3)=0       x=0,12,−3       (x,y)=(0,0) (12,36) (−3,−9)    (u+v,uv)=(0,0) (12,36) (−3,−9)  when u+v=0,uv=0  (i)is not defined    (α+β,αβ)⇒z^2 −(α+β)z+αβ=0′s solution  z^2 −12z+36=0⇒z=6  z^2 +3z−9=0⇒z=((−3±3(√5))/2)    ⇒(u,v)=(6,6) (((−3±3(√5))/2),((−3∓3(√3))/2))    ∴(u,v)=(6,6) (((−3±3(√5))/2),((−3∓3(√3))/2)).

$$ \\ $$$$\left({i}\right)\frac{{v}+{u}}{{uv}}=\frac{\mathrm{1}}{\mathrm{3}}\Leftrightarrow\:\:\mathrm{3}\left({u}+{v}\right)={uv} \\ $$$$ \\ $$$$\left({ii}\right)\frac{{u}^{\mathrm{3}} +{v}^{\mathrm{3}} }{{uv}}=\mathrm{12}\Leftrightarrow\left({u}+{v}\right)\left({u}^{\mathrm{2}} −{uv}+{v}^{\mathrm{2}} \right)=\mathrm{12}{uv} \\ $$$$\Leftrightarrow\left({u}+{v}\right)\left\{\left({u}+{v}\right)^{\mathrm{2}} −\mathrm{3}{uv}\right\}=\mathrm{12}{uv} \\ $$$$ \\ $$$${set}\:\begin{cases}{{u}+{v}={x}}\\{{uv}={y}}\end{cases} \\ $$$$\left({i}\right),\left({ii}\right)\Rightarrow\begin{cases}{\left(\mathrm{1}\right).\:\mathrm{3}{x}={y}}\\{\left(\mathrm{2}\right).\:{x}^{\mathrm{3}} −\mathrm{3}{xy}=\mathrm{12}{y}}\end{cases} \\ $$$$\left(\mathrm{2}\right)\Rightarrow{x}^{\mathrm{3}} −\mathrm{3}{x}\left(\mathrm{3}{x}\right)=\mathrm{12}\left(\mathrm{3}{x}\right)\:\:\:\left(\left(\mathrm{1}\right)\right) \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}} −\mathrm{36}{x}=\mathrm{0} \\ $$$$\:\:\:\:\:{x}\left({x}−\mathrm{12}\right)\left({x}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:{x}=\mathrm{0},\mathrm{12},−\mathrm{3} \\ $$$$\:\:\:\:\:\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right)\:\left(\mathrm{12},\mathrm{36}\right)\:\left(−\mathrm{3},−\mathrm{9}\right) \\ $$$$ \\ $$$$\left({u}+{v},{uv}\right)=\left(\mathrm{0},\mathrm{0}\right)\:\left(\mathrm{12},\mathrm{36}\right)\:\left(−\mathrm{3},−\mathrm{9}\right) \\ $$$${when}\:{u}+{v}=\mathrm{0},{uv}=\mathrm{0} \\ $$$$\left({i}\right){is}\:{not}\:{defined} \\ $$$$ \\ $$$$\left(\alpha+\beta,\alpha\beta\right)\Rightarrow{z}^{\mathrm{2}} −\left(\alpha+\beta\right){z}+\alpha\beta=\mathrm{0}'{s}\:{solution} \\ $$$${z}^{\mathrm{2}} −\mathrm{12}{z}+\mathrm{36}=\mathrm{0}\Rightarrow{z}=\mathrm{6} \\ $$$${z}^{\mathrm{2}} +\mathrm{3}{z}−\mathrm{9}=\mathrm{0}\Rightarrow{z}=\frac{−\mathrm{3}\pm\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow\left({u},{v}\right)=\left(\mathrm{6},\mathrm{6}\right)\:\left(\frac{−\mathrm{3}\pm\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}},\frac{−\mathrm{3}\mp\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\therefore\left({u},{v}\right)=\left(\mathrm{6},\mathrm{6}\right)\:\left(\frac{−\mathrm{3}\pm\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}},\frac{−\mathrm{3}\mp\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\right). \\ $$

Commented by Tawakalitu. last updated on 30/Jul/16

Thanks for your help. i appreciate.

$${Thanks}\:{for}\:{your}\:{help}.\:{i}\:{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com