Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121899 by ZiYangLee last updated on 12/Nov/20

Solve (log 2x)^2 +(log 3x)^2 =(log 2)^2 +(log 3)^2

$$\mathrm{Solve}\:\left(\mathrm{log}\:\mathrm{2}{x}\right)^{\mathrm{2}} +\left(\mathrm{log}\:\mathrm{3}{x}\right)^{\mathrm{2}} =\left(\mathrm{log}\:\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{log}\:\mathrm{3}\right)^{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 12/Nov/20

x=1  2log^2 x+2log2logx+2log3logx=0  log^2 x+logxlog6=0  logx=−log6⇒x=(1/6)    or logx=0 ,x=1

$${x}=\mathrm{1} \\ $$$$\mathrm{2}{log}^{\mathrm{2}} {x}+\mathrm{2}{log}\mathrm{2}{logx}+\mathrm{2}{log}\mathrm{3}{logx}=\mathrm{0} \\ $$$${log}^{\mathrm{2}} {x}+{logxlog}\mathrm{6}=\mathrm{0} \\ $$$${logx}=−{log}\mathrm{6}\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{6}}\:\:\:\:{or}\:{logx}=\mathrm{0}\:,{x}=\mathrm{1} \\ $$

Commented by ZiYangLee last updated on 12/Nov/20

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Answered by MJS_new last updated on 12/Nov/20

(log nx)^2 =(log x)^2 +2log n log x +(ln n)^2   transforming the given equation we get  log x log (6x) =0  ⇒ x=1∨x=(1/6)

$$\left(\mathrm{log}\:{nx}\right)^{\mathrm{2}} =\left(\mathrm{log}\:{x}\right)^{\mathrm{2}} +\mathrm{2log}\:{n}\:\mathrm{log}\:{x}\:+\left(\mathrm{ln}\:{n}\right)^{\mathrm{2}} \\ $$$$\mathrm{transforming}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{log}\:{x}\:\mathrm{log}\:\left(\mathrm{6}{x}\right)\:=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{1}\vee{x}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by ZiYangLee last updated on 12/Nov/20

Thanks sir..★

$$\mathrm{Thanks}\:\mathrm{sir}..\bigstar \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com