Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 205114 by 2kdw last updated on 09/Mar/24

Solve:      lim_((x,y)→(0,0)) ((1−cos((√(10xy))))/(3.y.sin(22x)))    Ans.: (5/(66))  Step by step, please!

$${Solve}: \\ $$$$ \\ $$$$\:\:{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \frac{\mathrm{1}−{cos}\left(\sqrt{\mathrm{10}{xy}}\right)}{\mathrm{3}.{y}.{sin}\left(\mathrm{22}{x}\right)} \\ $$$$ \\ $$$${Ans}.:\:\frac{\mathrm{5}}{\mathrm{66}} \\ $$$${Step}\:{by}\:{step},\:{please}! \\ $$

Answered by MM42 last updated on 09/Mar/24

lim_((x,y)→(0,0)) ((2sin^2 (((√(10xy))/2)))/(3ysin22x))  ∼=lim_((x,y)→(0,0)) ((2×(((sin((√(10xy))/2))/( ((√(10xy))/2))))^2  ×((10xy)/4))/(3y×(((sin22x)/(22x)))×22x))    =((5xy)/(66xy))=(5/(66))  ✓

$${lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\sqrt{\mathrm{10}{xy}}}{\mathrm{2}}\right)}{\mathrm{3}{ysin}\mathrm{22}{x}} \\ $$$$\sim={lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \frac{\mathrm{2}×\left(\frac{{sin}\frac{\sqrt{\mathrm{10}{xy}}}{\mathrm{2}}}{\:\frac{\sqrt{\mathrm{10}{xy}}}{\mathrm{2}}}\right)^{\mathrm{2}} \:×\frac{\mathrm{10}{xy}}{\mathrm{4}}}{\mathrm{3}{y}×\left(\frac{{sin}\mathrm{22}{x}}{\mathrm{22}{x}}\right)×\mathrm{22}{x}}\: \\ $$$$\:=\frac{\mathrm{5}{xy}}{\mathrm{66}{xy}}=\frac{\mathrm{5}}{\mathrm{66}}\:\:\checkmark \\ $$$$ \\ $$

Commented by 2kdw last updated on 09/Mar/24

Thanks Sir

Commented by lepuissantcedricjunior last updated on 12/Mar/24

good !!!

$$\boldsymbol{{good}}\:!!! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com