Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 56321 by Tawa1 last updated on 14/Mar/19

Solve for  x and y        x (√x)  + y(√y)  = 182      ..... (i)        x (√y)  + y(√x)  = 183      ..... (ii)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{x}}\:\:+\:\mathrm{y}\sqrt{\mathrm{y}}\:\:=\:\mathrm{182}\:\:\:\:\:\:.....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\mathrm{x}\:\sqrt{\mathrm{y}}\:\:+\:\mathrm{y}\sqrt{\mathrm{x}}\:\:=\:\mathrm{183}\:\:\:\:\:\:.....\:\left(\mathrm{ii}\right) \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Mar/19

x=a^2    y=b^2   a^3 +b^3 =182  a^2 b+ab^2 =183  (a+b)^3 −3ab(a+b)=182  (a+b)^3 −3×183=182  (a+b)^3 =182+549=731  (a+b)=(731)^(1/3) ≈9.008→consider 9  a+b=9  ab(a+b)=183  ab=((183)/((731)^(1/3) ))=((183)/(9.008))=20.32  for calculation easy..a+b=9  ab=20  (9−b)b=20  9b−b^2 −20=0  b^2 −9b+20=0  (b−4)(b−5)=0  b=4 and  5  a=5 and 4  x=25 and 16  y=16 and 25

$${x}={a}^{\mathrm{2}} \:\:\:{y}={b}^{\mathrm{2}} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{182} \\ $$$${a}^{\mathrm{2}} {b}+{ab}^{\mathrm{2}} =\mathrm{183} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right)=\mathrm{182} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}×\mathrm{183}=\mathrm{182} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} =\mathrm{182}+\mathrm{549}=\mathrm{731} \\ $$$$\left({a}+{b}\right)=\left(\mathrm{731}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \approx\mathrm{9}.\mathrm{008}\rightarrow{consider}\:\mathrm{9} \\ $$$${a}+{b}=\mathrm{9} \\ $$$${ab}\left({a}+{b}\right)=\mathrm{183} \\ $$$${ab}=\frac{\mathrm{183}}{\left(\mathrm{731}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }=\frac{\mathrm{183}}{\mathrm{9}.\mathrm{008}}=\mathrm{20}.\mathrm{32} \\ $$$${for}\:{calculation}\:{easy}..{a}+{b}=\mathrm{9} \\ $$$${ab}=\mathrm{20} \\ $$$$\left(\mathrm{9}−{b}\right){b}=\mathrm{20} \\ $$$$\mathrm{9}{b}−{b}^{\mathrm{2}} −\mathrm{20}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} −\mathrm{9}{b}+\mathrm{20}=\mathrm{0} \\ $$$$\left({b}−\mathrm{4}\right)\left({b}−\mathrm{5}\right)=\mathrm{0} \\ $$$${b}=\mathrm{4}\:{and}\:\:\mathrm{5} \\ $$$${a}=\mathrm{5}\:{and}\:\mathrm{4} \\ $$$${x}=\mathrm{25}\:{and}\:\mathrm{16} \\ $$$${y}=\mathrm{16}\:{and}\:\mathrm{25} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Mar/19

the given problem can be solved but it need calculation  so i approximated it...

$${the}\:{given}\:{problem}\:{can}\:{be}\:{solved}\:{but}\:{it}\:{need}\:{calculation} \\ $$$${so}\:{i}\:{approximated}\:{it}... \\ $$

Commented by Tawa1 last updated on 14/Mar/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by behi83417@gmail.com last updated on 14/Mar/19

x=t^2 ,y=s^2   ⇒ { ((t^3 +s^3 =182)),((t^2 s+s^2 t=183)) :}⇒_(ts=q) ^(t+s=p)  { (((t+s)(t^2 +s^2 −ts)=182)),((ts(t+s)=183)) :}  ⇒ { ((p(p^2 −3q)=182)),((qp=183)) :}⇒ { ((p^3 −3pq=182)),((pq=183)) :}  ⇒p^3 =3×183+182=731  ⇒p#9⇒q#20  ⇒ { ((t+s=9)),((ts=20)) :}⇒ { ((t=4)),((s=5)) :}⇒ { ((x=16)),((y=25)) :}   .■

$${x}={t}^{\mathrm{2}} ,{y}={s}^{\mathrm{2}} \\ $$$$\Rightarrow\begin{cases}{{t}^{\mathrm{3}} +{s}^{\mathrm{3}} =\mathrm{182}}\\{{t}^{\mathrm{2}} {s}+{s}^{\mathrm{2}} {t}=\mathrm{183}}\end{cases}\underset{{ts}={q}} {\overset{{t}+{s}={p}} {\Rightarrow}}\begin{cases}{\left({t}+{s}\right)\left({t}^{\mathrm{2}} +{s}^{\mathrm{2}} −{ts}\right)=\mathrm{182}}\\{{ts}\left({t}+{s}\right)=\mathrm{183}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{{p}\left({p}^{\mathrm{2}} −\mathrm{3}{q}\right)=\mathrm{182}}\\{{qp}=\mathrm{183}}\end{cases}\Rightarrow\begin{cases}{{p}^{\mathrm{3}} −\mathrm{3}{pq}=\mathrm{182}}\\{{pq}=\mathrm{183}}\end{cases} \\ $$$$\Rightarrow{p}^{\mathrm{3}} =\mathrm{3}×\mathrm{183}+\mathrm{182}=\mathrm{731} \\ $$$$\Rightarrow{p}#\mathrm{9}\Rightarrow{q}#\mathrm{20} \\ $$$$\Rightarrow\begin{cases}{{t}+{s}=\mathrm{9}}\\{{ts}=\mathrm{20}}\end{cases}\Rightarrow\begin{cases}{{t}=\mathrm{4}}\\{{s}=\mathrm{5}}\end{cases}\Rightarrow\begin{cases}{{x}=\mathrm{16}}\\{{y}=\mathrm{25}}\end{cases}\:\:\:.\blacksquare \\ $$

Commented by Tawa1 last updated on 14/Mar/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com