Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 209872 by Frix last updated on 24/Jul/24

Solve for x∈R:  x^3 −3x^2 +2=(√(x+1))

$$\mathrm{Solve}\:\mathrm{for}\:{x}\in\mathbb{R}: \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}=\sqrt{{x}+\mathrm{1}} \\ $$

Answered by Ghisom last updated on 24/Jul/24

x=t+1  t^3 −3t=(√(t+2))  expecting 3 solutions at most  remember cos 3α =4cos^3  α −3cos α  ⇒ t=2cos α ∧ 0≤α≤π  8cos^3  α −6cos α =(√(2+2cos α))  2cos 3α =(√(2(1+cos α)))  remember 1+cos 2β =2cos^2  β  ⇒  2cos 3α =(√(4cos^2  (α/2)))  cos 3α =∣cos (α/2)∣  ⇒ α=0∨α=((4π)/7)∨α=((4π)/5)  ⇒ t=2∨t=2cos ((4π)/7) ∨t=−((1+(√5))/2)  ⇒ x=3∨x=1−2cos ((4π)/7) ∨x=((1−(√5))/2)

$${x}={t}+\mathrm{1} \\ $$$${t}^{\mathrm{3}} −\mathrm{3}{t}=\sqrt{{t}+\mathrm{2}} \\ $$$$\mathrm{expecting}\:\mathrm{3}\:\mathrm{solutions}\:\mathrm{at}\:\mathrm{most} \\ $$$$\mathrm{remember}\:\mathrm{cos}\:\mathrm{3}\alpha\:=\mathrm{4cos}^{\mathrm{3}} \:\alpha\:−\mathrm{3cos}\:\alpha \\ $$$$\Rightarrow\:{t}=\mathrm{2cos}\:\alpha\:\wedge\:\mathrm{0}\leqslant\alpha\leqslant\pi \\ $$$$\mathrm{8cos}^{\mathrm{3}} \:\alpha\:−\mathrm{6cos}\:\alpha\:=\sqrt{\mathrm{2}+\mathrm{2cos}\:\alpha} \\ $$$$\mathrm{2cos}\:\mathrm{3}\alpha\:=\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\alpha\right)} \\ $$$$\mathrm{remember}\:\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\:=\mathrm{2cos}^{\mathrm{2}} \:\beta \\ $$$$\Rightarrow \\ $$$$\mathrm{2cos}\:\mathrm{3}\alpha\:=\sqrt{\mathrm{4cos}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\mathrm{3}\alpha\:=\mid\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\mid \\ $$$$\Rightarrow\:\alpha=\mathrm{0}\vee\alpha=\frac{\mathrm{4}\pi}{\mathrm{7}}\vee\alpha=\frac{\mathrm{4}\pi}{\mathrm{5}} \\ $$$$\Rightarrow\:{t}=\mathrm{2}\vee{t}=\mathrm{2cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\:\vee{t}=−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\mathrm{3}\vee{x}=\mathrm{1}−\mathrm{2cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\:\vee{x}=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Commented by Frix last updated on 24/Jul/24

Great idea!

$$\mathrm{Great}\:\mathrm{idea}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com