Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 140767 by EDWIN88 last updated on 12/May/21

Solve for x : 2cot^2 x + csc^2 x−2 = 0

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\::\:\mathrm{2cot}\:^{\mathrm{2}} \mathrm{x}\:+\:\mathrm{csc}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}\:=\:\mathrm{0}\: \\ $$

Answered by Ar Brandon last updated on 12/May/21

2cot^2 x+csc^2 x−2=0  2cot^2 x+cot^2 x+1−2=0  3cot^2 x−1=0  cotx=±((√3)/3) ⇒tanx=±(√3)  x=±(π/3)+πn , n∈Z

$$\mathrm{2cot}^{\mathrm{2}} \mathrm{x}+\mathrm{csc}^{\mathrm{2}} \mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{2cot}^{\mathrm{2}} \mathrm{x}+\mathrm{cot}^{\mathrm{2}} \mathrm{x}+\mathrm{1}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{3cot}^{\mathrm{2}} \mathrm{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{cotx}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:\Rightarrow\mathrm{tanx}=\pm\sqrt{\mathrm{3}} \\ $$$$\mathrm{x}=\pm\frac{\pi}{\mathrm{3}}+\pi\mathrm{n}\:,\:\mathrm{n}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com