Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158187 by HongKing last updated on 31/Oct/21

Solve for real numbers:   { (((√x) - y^5  = 3)),(((((√x) - 3))^(1/5)  - ((y^5  + 6))^(1/5)  = - 1)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}}\:-\:\mathrm{y}^{\mathrm{5}} \:=\:\mathrm{3}}\\{\sqrt[{\mathrm{5}}]{\sqrt{\mathrm{x}}\:-\:\mathrm{3}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{y}^{\mathrm{5}} \:+\:\mathrm{6}}\:=\:-\:\mathrm{1}}\end{cases}\: \\ $$$$ \\ $$

Answered by MJS_new last updated on 31/Oct/21

(√x)=y^5 +3 [x≥0 ∧ (√x)≥0]  y−(y^5 +6)^(1/5) =−1  y^4 +2y^3 +2y^2 +y−1=0  (y^2 +y+((1−(√5))/2))(y^2 +y+((1+(√5))/2))=0  y=((−1+(√(−1+2(√5))))/2)  ⇒ x=((7+5(√5))/2)

$$\sqrt{{x}}={y}^{\mathrm{5}} +\mathrm{3}\:\left[{x}\geqslant\mathrm{0}\:\wedge\:\sqrt{{x}}\geqslant\mathrm{0}\right] \\ $$$${y}−\left({y}^{\mathrm{5}} +\mathrm{6}\right)^{\mathrm{1}/\mathrm{5}} =−\mathrm{1} \\ $$$${y}^{\mathrm{4}} +\mathrm{2}{y}^{\mathrm{3}} +\mathrm{2}{y}^{\mathrm{2}} +{y}−\mathrm{1}=\mathrm{0} \\ $$$$\left({y}^{\mathrm{2}} +{y}+\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\left({y}^{\mathrm{2}} +{y}+\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$${y}=\frac{−\mathrm{1}+\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{7}+\mathrm{5}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Commented by HongKing last updated on 31/Oct/21

perfect dear Ser, thank you so much

$$\mathrm{perfect}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by ajfour last updated on 01/Nov/21

awestrike precision!

$${awestrike}\:{precision}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com