Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152892 by mathdanisur last updated on 02/Sep/21

Solve for real numbers the following  system of equations:   { ((x^2  - yz = 3)),((y^2  - xz = 1)),((z^2  - xy = - 1)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{yz}\:=\:\mathrm{3}}\\{\mathrm{y}^{\mathrm{2}} \:-\:\mathrm{xz}\:=\:\mathrm{1}}\\{\mathrm{z}^{\mathrm{2}} \:-\:\mathrm{xy}\:=\:-\:\mathrm{1}}\end{cases} \\ $$

Commented by MJS_new last updated on 03/Sep/21

simply put y=px∧z=qx and it′s easy to solve

$$\mathrm{simply}\:\mathrm{put}\:{y}={px}\wedge{z}={qx}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$

Commented by mathdanisur last updated on 03/Sep/21

Yes, x=±(6/3) ; y=∓(2/3) ; z=±(1/3)

$$\mathrm{Yes},\:\mathrm{x}=\pm\frac{\mathrm{6}}{\mathrm{3}}\:;\:\mathrm{y}=\mp\frac{\mathrm{2}}{\mathrm{3}}\:;\:\mathrm{z}=\pm\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com