Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 146854 by mathdanisur last updated on 16/Jul/21

Solve for real numbers the following  system of equations   { ((a(a+1) = b−1)),((a^2 (b+3)+2a = −1)) :}

$${Solve}\:{for}\:{real}\:{numbers}\:{the}\:{following} \\ $$$${system}\:{of}\:{equations} \\ $$$$\begin{cases}{{a}\left({a}+\mathrm{1}\right)\:=\:{b}−\mathrm{1}}\\{{a}^{\mathrm{2}} \left({b}+\mathrm{3}\right)+\mathrm{2}{a}\:=\:−\mathrm{1}}\end{cases} \\ $$

Commented by Mrsof last updated on 16/Jul/21

a(a+b)+4=b+3    a^2 (a(a+1)+4)+2a=−1    ⇒a^4 +a^3 +4a^2 +2a+1=0    ⇒a^3 (a+1)+2a^2 +2a+2a^2 +1=0    ⇒a^3 (a+1)+2a(a+1)+(2a^2 +1)=0    ⇒(a+1)(a^3 +2a)+(2a^2 +1)=0    has no solution in R

$${a}\left({a}+{b}\right)+\mathrm{4}={b}+\mathrm{3} \\ $$$$ \\ $$$${a}^{\mathrm{2}} \left({a}\left({a}+\mathrm{1}\right)+\mathrm{4}\right)+\mathrm{2}{a}=−\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{a}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{a}^{\mathrm{3}} \left({a}+\mathrm{1}\right)+\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow{a}^{\mathrm{3}} \left({a}+\mathrm{1}\right)+\mathrm{2}{a}\left({a}+\mathrm{1}\right)+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow\left({a}+\mathrm{1}\right)\left({a}^{\mathrm{3}} +\mathrm{2}{a}\right)+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$${has}\:{no}\:{solution}\:{in}\:{R} \\ $$

Commented by mathdanisur last updated on 16/Jul/21

thank you Ser

$${thank}\:{you}\:{Ser} \\ $$

Answered by liberty last updated on 16/Jul/21

  { ((a(a+1)=b−1⇒b=a^2 +a+1)),((a^2 (b+3)+2a=−1)) :}   ⇒a^2 (a^2 +a+4)+2a+1=0  ⇒a^4 +a^3 +4a^2 +2a+1=0  ⇒(a^2 +pa+1)(a^2 +qa+1)=        a^4 +a^3 +4a^2 +2a+1  ⇒a^4 +(p+q)a^3 +(2+pq)a^2 +(p+q)a+1=      a^4 +a^3 +4a^2 +2a+1  ⇒ { ((p+q=1)),((2+pq=4)),((p+q=2)) :} the equation inconsistent

$$\:\begin{cases}{{a}\left({a}+\mathrm{1}\right)={b}−\mathrm{1}\Rightarrow{b}={a}^{\mathrm{2}} +{a}+\mathrm{1}}\\{{a}^{\mathrm{2}} \left({b}+\mathrm{3}\right)+\mathrm{2}{a}=−\mathrm{1}}\end{cases} \\ $$$$\:\Rightarrow{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{a}+\mathrm{4}\right)+\mathrm{2}{a}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +{a}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} +{pa}+\mathrm{1}\right)\left({a}^{\mathrm{2}} +{qa}+\mathrm{1}\right)= \\ $$$$\:\:\:\:\:\:{a}^{\mathrm{4}} +{a}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{4}} +\left({p}+{q}\right){a}^{\mathrm{3}} +\left(\mathrm{2}+{pq}\right){a}^{\mathrm{2}} +\left({p}+{q}\right){a}+\mathrm{1}= \\ $$$$\:\:\:\:{a}^{\mathrm{4}} +{a}^{\mathrm{3}} +\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{1} \\ $$$$\Rightarrow\begin{cases}{{p}+{q}=\mathrm{1}}\\{\mathrm{2}+{pq}=\mathrm{4}}\\{{p}+{q}=\mathrm{2}}\end{cases}\:{the}\:{equation}\:{inconsistent} \\ $$

Commented by mathdanisur last updated on 16/Jul/21

thank you Ser

$${thank}\:{you}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com